Areas of Particular Environmental Interest (or “Protected Areas”) for Ecosystem Based Management of the Clarion-Clipperton Zone: Rationale and Recommendations to the International Seabed Authority

From

20 Expert participants in the workshop to Design Marine Protected Areas for Seamounts and the Abyssal Nodule Province in Pacific High Seas, Oct 23-26, 2007, University of Hawaii

* Marine Geologist
*Conservation Ecologists
*Biological Oceanographers
*Physical Oceanographers

*Pew Fellows in Marine Conservation
* Fisheries Biologist
* International Lawyer

11 institutions, 8 nationalities

Sponsors: Pew Foundation for Marine Conservation, Kaplan Fund, Sloan Foundation (CoML), International Seabed Authority, University of Hawaii
Marine protected areas are used widely in ecosystem-based environmental management plans to protect –

- Biodiversity
- Ecosystem functions and services
- Sustainability of resources

In the presence of fishing, oil drilling, mining, and other human impacts.

Science of MPA design and application is well developed –

It is critically important to apply this knowledge to extractive activities in the deep sea in The Area.

E.g., NODULE MINING

Before –
- Extractive activities begin
- Coverage by claims excludes effective siting of protected areas
Workshop outcome:

- Recommend dividing Clarion-Clipperton Zone into 9 ecological subregions
 - Each with one 400 km x 400 km Area of Particular Environmental Interest (APEI), i.e., protected area
 - APEIs integrated into current exploration mining claim framework
 - ~30% of management area protected (~optimizes conservation benefits)

Locations of APEIs within subregions is flexible –

Allowing adaptive management
How did we arrive at these recommendations?

A) Started from set of reasonable assumptions concerning mining impacts and CCZ ecology and biogeography –

B) Then applied 8 guidelines and rationales from the ISA and conservation biology

A) ASSUMPTIONS:

Mining will affect large areas of seafloor due to –

- direct disturbance (300-600 km² y⁻¹)
- sediment plumes (10’s of km from site)

Oebius et al. (2001)
Heterogeneous distribution of nodules will be reflected in mining patterns –

Over 15 yr mining operation, anywhere in a claim area can mined and impacted –

Thus – the entire area of each 75,000 km² claim must be considered to be potentially impacted.

Size and relative position of potential mining blocks in the French pioneer area, N. Pacific Ocean (modified from Lenoble 1999).
Benthic ecosystem recovery will be slow – requiring
- Decades for soft sediment community structure and function

Example of slow recovery of habitat structure in CCZ -

OMCO Testing mining Track in CCZ
~1.5 m wide
~10 cm deep

Appears very fresh.

How old is it?
26 years!
Recovery for nodule specializing fauna?

Millennia - Because nodules grow back at a few mm per million years
Conclusion:

Over time scales of benthic ecosystem recovery (decades - millennia) all current mining claims will potentially be impacted by mining, i.e. –

Environmental impacts of mining will be simultaneous and widespread across the CCZ, requiring that conservation be managed across the region as a whole.
Guideline/Rationale 1:

1) *APEI design and implementation should fit into the existing legal mandate of the ISA for managing seabed mining and protecting the marine environment.*

ISA Guidelines: ISBA / 4 / C / 4 / Rev. 1, annex 4, section 5.6

- Protected areas will be delineated “in which no mining will occur to ensure representative and stable biota of the seabed”

- “The preservation reference zone[s] … should be large enough so as not to be affected by the natural variations of local environmental conditions.”

- “The zone[s] should have species composition comparable to that of the test mining area[s].”

- “The preservation zone[s] should be outside of test mining area[s] and areas influenced by the plume”
In brief, ISA guidelines stipulate that:

- Prior to test mining and mining, protected areas must be erected beyond the potential influences of mining.

- Protected areas should be designed (as a whole) to sustainably preserve representative biota for all mining claim areas in terms of species composition and biodiversity.

- The full range of habitat and community types potentially found in mining claim areas must be represented in protected areas.

- The scale of protected areas must be large enough that these community types are “stable”, i.e., sustainable.
2) The interests of all stakeholders (ISA, UNCLOS signatories, nodule-mining claim holders, NGOs, the science community) should be incorporated into the design. Protected areas should be established as soon as possible so ecosystem-based management can be incorporated into mining strategies and positioning of new claim areas.

E.g., position protected areas in unclaimed portions of CCZ & Consider links among all living and nonliving components of the ocean ecosystems.
Guideline/Rationale 3:

3) The protected area system is designed with the following conservation goals for CCZ -

- Preserve Representative and Unique Marine Habitats
- Preserve Marine Biodiversity, and Ecosystem Structure & Function
- Facilitate the Management of Mining to Maintain Sustainable, Intact, and Healthy Marine Ecosystems

These goals are in agreement with the ISA’s mandate to protect the marine environment and to manage seabed mining to sustain the ocean environment and its resources as the common heritage of mankind.

Also consistent with general design goals for marine reserves (and Ecosystem Based Management) as widely applied (e.g., NRC 2001, CBD IX/20 Annex 1)
Guideline/Rationale 4:

4) The CCZ region can be divided into three east-west and three north-south strata for conservation management because of strong productivity driven gradients in ecosystem structure and function from east to west and south to north. This yields nine distinct subregions within the CCZ, each requiring a protected area (or APEI).
In CCZ, food from sinking POC flux → “Food Limited”

- Biomass, community structure, production, growth rates, recolonization rates all controlled by the flux of sinking POC

From R. Carney
Export flux (mmol N m2 d$^{-1}$) for CCZ estimated from Yool et al. (2007) model. Note N-S and E-W gradients and that each of 9 subregions has different export flux regime.
Estimates POC flux to the seafloor yields similar N-S and E-W gradients, and similar “food availability” regimes in CCZ (Lutz et al., 2010).

Why is this important to abyssal CCZ?
On regional scales, abyssal ecosystem structure & function is strongly correlated with annual POC flux -

- Megafaunal abundance: $r^2 = 0.94$
- Macrofaunal biomass: $r^2 = 0.96$
- Microfaunal abundance: $r^2 = 0.672$
- Microbial biomass: $r^2 = 0.58$
- Macrofaunal biomass: $r^2 = 0.96$
- Nematode biomass: $r^2 = 0.921$
- SCOC: $r^2 = 0.6048$
- 210Pb: $r^2 = 0.88$
- Mixed-layer depth: $r^2 = 0.87$

~ scale of change in POC flux across CCZ (Lutz et al., 2007)
CCZ example - Macrofaunal abundance and (abundance of polychaetes, tanaids and isopods), strongly correlated with overlying production and food availability at the CCZ seafloor (Mincks et al., in prep.).

Data from CCZ Region

\[
y = 10737x - 444.86
\]

\[R^2 = 0.6384\]
Also important to note: CCZ fauna surprisingly diverse, e.g., “charismatic” megafauna:

Nautile dives June 04, > 20 spp. in few km²

- Eyeless Fish (Ophidiid?)
- Cirrate Octopod
- Glass sponge & brisingids
- Anemone
- Psychropotes longicauda
- Psychropotes semperiana

Hyphalaster
- Macrofauna also has very high **local** species diversity

80 - 100 macrofaunal species per m²

Despite low habitat complexity – Rivals most diverse ecosystems on earth

~ 50 spp per 100 individuals
Species structure of this diverse fauna varies across CCZ with productivity -

E.g., three sites in CCZ (~1500 km apart)

- **Major differences in polychaete fauna at family level** *(Kaplan Project, Smith et al. 2007)*

- **Driven by productivity gradient?**

Polychaete families

<table>
<thead>
<tr>
<th>Percent of macrofauna</th>
<th>Nodinaut West (Kaplan West)</th>
<th>Nodinaut East (Kaplan Central)</th>
<th>Kaplan East</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Black</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>80%</td>
<td>Brown</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>60%</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>40%</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>20%</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>0%</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
</tbody>
</table>

- Proportion of lumberinerids significantly lower at C and W (< 0.05, Chi square test)
- Proportion of Amphinomids significantly lower at Kaplan C than E (< 0.025)

Similar turnover seen in polychaete and foraminiferan spp. *(Smith et al. 2008, ISA Technical Study ; no.3).*
Guideline/Rationale 5:

5) *The boundaries of protected areas (APEIs) should be straight lines to facilitate rapid recognition by all parties.*

Straight-line boundaries = basic principle of the design of marine protected areas that facilitates recognition, monitoring and enforcement of APEIs as no-mining zones.
Guideline/Rationale 6:

6) Core area of each protected area (APEI) should be at least 200 km in length and width, i.e., large enough to maintain minimum sustainable population sizes for species potentially restricted to a subregion of the CCZ.
Because animals leaving protected areas (APEIs) may not survive –

To promote sustainable populations: APEI size > distance of movement of animals

For some adults may be small

Botsford, Hastings and Gaines 2001
For larvae, APEI must be larger. For sustainable populations, APEI size must be 2X average dispersal distance of larvae (Lockwood et al. 2002; Almany et al. 2009).

Most marine benthos have mean larval dispersal distances <100 km.

Recommended PRA core size -

200 x 200 km

Estimated Dispersal Distance

Kinlan and Gaines, 2001
Note also that the spacing between core areas of adjacent APEIs is of variable and of order 300 – 500 km, leaving little gap in the within and the between APEI scales. Thus, larvae dispersing out of APEIs are unlikely to land only in the gaps (Almany et al. 2009).

APEIs can function as network
Guideline/Rationale 7:

7) Each protected area (APEI) should contain the full range of habitat types found within its subregion:

Abyssal plains/abyssal hills
with and without nodules
(200 x 200 km adequate)

Seamounts
(often harbor unique, vulnerable, diverse communities – protect 30-40% in each subregion)

If prudently placed, scales of 200 km likely to capture full range of habitat types
Guideline/Rationale 8:

8) Each PRA core area should be surrounded by a buffer zone 100-km wide to insure that benthic communities in the APEI core are not affected by mining plumes.

Physical oceanographic models and tracer experiments suggest plume disturbance of *benthos* over scales of <100 km.

(Oebius, 2001; Rolinski et al. 2001; Ledwell 2000; Thurnherr 2004)
Summary of Recommendations –

- Nine 400 x 400 km protected areas (APEIs) within the CCZ. One APEI in each of the 9 subregions defined by productivity gradients and faunal turnover. APEIs situated to avoid or minimize overlap with existing mining exploration and reserved claim areas and to protect as many seamounts as possible within a subregion.

One option for location of APEIs within subregions (locations are flexible, i.e., negotiable subject to stakeholder interests, capture of full range of habitats, and improving knowledge of CCZ)
Strengths of approach:

1) It is based on sound conservation management principles

2) Protects ~30% of CCZ, i.e., optimizes conservation and sustainability benefits (many references)

3) Manages CCZ conservation as a whole, facilitating cooperation in –

- selection (and monitoring) of protected areas (APEIs)

- maintenance of biodiversity and ecosystem function across the region
Questions ?
Very similar to recommendations in UNESCO report of Tilot, 2010 (Options for the management and conservation of the biodiversity Vol.3 The nodule ecosystem in the Clarion Clipperton Fracture Zone: scientific, legal and institutional aspects)

Fig.15. Tilot proposal of a network of seven Seabed Preservation Reference Areas (red squares), each 400 x 400 km compared to one option of the Pew Workshop Recommendations (black squares).
CCZ cuts across hypothesized Biogeographic Provinces of the Abyssal Ocean (3500-6500 m)

Common Solutions

From Airame et al. 2002, NCEAS Marine Reserve Working Group
Wei, C.-L., In review. Global Patterns and Predictions of Seafloor Biomass Using Random Forests. *PLOS One*
Flux (g C$_{org}$ m$^{-2}$ yr$^{-1}$)

Seafloor annual POC flux (Lutz et al., 2007)
Reserves and Species Persistence

Worst Case Scenario:
Species Extinct Outside Reserves

Persistence Threshold

Reserves and Species Persistence

2 Conservation Solutions:

Large Individual Size
- > mean dispersal distance
- 2 - 3x mean dispersal distance with advection

Same Rules for Dispersal of Young MPA size > movement
Key Criterion:

Spacing of MPAs < Larval Dispersal
Number of species

Little Benefit

- Seaweeds
 - Little Benefit

- Invertebrates

- Fishes

Estimated Dispersal Distance

- 1 m
- 10 m
- 100 m
- 1 km
- 10 km
- 100 km
- 1000 km

500 km Spacing
The estimated average distances traveled by young invertebrates (51 species), fishes (26 species), and seaweeds (13 species) prior to settling at their adult homes. Distances are based on genetic analysis of species around the world.

Data: Kinlan & Gaines (2003) Ecology
Results of plowing in DISCOL & others: few mm of deposition

Dramatic declines in abundance & diversity of macrofauna and megafauna within 11 km2 after 7 years

- Redeposited layer low in food quality (Fukushima & Kuboki, 2000)

Fig. 2. Disturbed area. Densities (Ind. 10,000 m$^{-2}$): arithmetic mean, minimum–maximum range and N, the number of records used.
Are faunal densities in the abyss a function of distance to the slope?

DMIN = shortest distance (r)
DSUM = $\sum \frac{1}{r^2}$ to vertices
(~1000 points)
HIGH GLOBAL DEEP-SEA DIVERSITY?

Global Biodiversity Estimates

- Freshwater (Described)\(^1\)
- Terrestrial (Described)\(^2\)
- Marine (Described)\(^3\)
- Tropical Insects
- Deep-Sea Sediments (macrofauna)

Snelgrove and Smith 2002

Novotny et al. 2002
Polychaete worms – broad range of repro. strategies

1) >200 species from single deep-sea regions – global richness??
 (e.g., Glover et al., 2001, 2002)

2) Abyssal endemics? - likely, but taxonomy poorly known (>90% undescribed)

3) Some abyssal species could be cosmopolitan – Aurospio dibranchiata
 (Glover, Mincks, Paterson, Smith – unpublished data)

4) Species turnover over 500-1000 k seems high – 20-50% endemism?

May be due to very poor sampling - most species are rare and at no site is species accumulation asymptote approached

Glover et al., 2002
General goals for Marine Protected Areas (also called Preservation Reference Areas = PRA) in region targeted for nodule mining (Clarian-Clipperton Fracture Zone):

1. Protect 30-50% of management area (CCFZ).

2. Each MPA should capture full range of habitat variability (all types of nodule fields, sediment plains, seamounts, scarps, etc.).

3. Each MPA should capture minimum viable population sizes for most components of the fauna to “ensure persistence of representative fauna” (core area 200 km x 200 km).

4. Replicate MPAs across the region to capture N-S and E-W turnover of biota (forced by gradients in primary productivity).

5. Make each MPA large enough that core region is buffered from impacts of mining, e.g., mining sediment plumes (buffer zone of 100 km).

6. Integrate MPAs into existing ISA framework of mining claims, without compromising scientific principles.

7. Straight line boundaries.