Pilot Mining Tests: Legal and Regulatory Issues

Katherine Houghton, LL.M. MALD
Institute for Advanced Sustainability Studies, Potsdam

“Ecological Safeguards for Deep Seabed Mining”
funded by the German Environment Agency (Umweltbundesamt)
Background

- Technology advancing – faster than the legal regime?
- Choice of technology is decisive for reducing impacts of DSM
- PMTs are a logical next step in technological development
- Current regulation of PMT is inadequate
- PMT is clear exercise of precautionary approach
- PMT is essential for adaptive management
- Environmental protection is most effective when it interfaces well with technical activities
Issue 1: Obligation to Conduct PMTs

• Fundamental issue – know origins of obligations and intended functions to ensure effective regulation

• Explicit Obligation:
 • Exploration: tests are foreseeable activities, but not specifically required
 • Application for Exploitation: prerequisite for exploitation?, “results of tests conducted” in feasibility study or EIA (need clarity in draft)
 • Exploitation: Standard clauses, “production tests” during development phase, “production tests”, “capacity tests” as “development obligations”
 • Extent of obligation defined in individual plan of work / contract
Issues 1: Obligation to Conduct PMTs

- Implicit Obligation:
 - Exploration: Best Available Techniques (BAT), Best Environmental Practices (BEP) – as far as reasonably possible
 - Exploitation application: “evidence of BAT”
 - Definition BAT (Dr. Env. Regs.): “latest stage of development”, “state of the art processes... facilities...methods of operation...”
 - Linked to BEP duty to continually update environmental protection standards in line with technological development (Dr. Env. Regs.)
 - In practice: dynamic nature of BAT/BEP requires on-going testing

DISCUSSION:

Is there a legal obligation to conduct pilot mining tests?

How can pilot mining be used to determine Best Available Techniques (BAT)?
Issue 2: Definition of “Scale” in UNCLOS

- Scale determines what PMT entails in a given stage of DSM: activities, environmental duties, performance requirements
- Scale ≈ scope of testing
- UNCLOS provisions for “small-, medium- and large-scale” technologies
 - Engineering transition between equipment/plants (components of production) and systems (capable of full production) – not size
- Scale here refers to technology – not area of affected seabed
 - Engineering-oriented, not ecosystem-oriented
- Scale describes the state and process of technological development
 - Necessary for defining BAT, “state of the art” for identifying appropriate sites
Scale and Technical Readiness Levels

• Problem: Need objective criteria for scale to regulate PMTs. TRLs?
• Standardized TRLs used in different industries where tech development is central
 • Space, offshore oil and gas, sub-sea systems, FP7 Blue Mining
• Are TRLs suitable for DSM? Advantages:
 • emphasize continuity between phases, reduce fragmentation
 • span the entire tech development process, coherent regulation
 • supports standardization, creation of “objective criteria”
 • support the determination of BAT – relevant at all scales
 • help pinpoint opportunities for better environmental protection
Technical Readiness Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unproven Concept (Basic R & D, paper concept)</td>
</tr>
<tr>
<td>1</td>
<td>Proven Concept (Proof of concept as a paper study or R & D experiments)</td>
</tr>
<tr>
<td>2</td>
<td>Validated Concept (Experimental proof of concept using physical model tests)</td>
</tr>
<tr>
<td>3</td>
<td>Prototype Tested (Component function, performance and reliability tested)</td>
</tr>
<tr>
<td>4</td>
<td>Environment Tested (Pre-production system environment tested)</td>
</tr>
<tr>
<td>5</td>
<td>System Tested (Production system interface environment tested)</td>
</tr>
<tr>
<td>6</td>
<td>System Installed (Production system installed and tested)</td>
</tr>
<tr>
<td>7</td>
<td>Field Proven (Production system field proven)</td>
</tr>
</tbody>
</table>
TRLs and UNCLOS Stages of DSM

DISCUSSION:
What is meant by “scale” in the DSM regime?
Is an international standard for Technical Readiness Levels (TRLs) useful for regulation?
Issue 3: Challenges of EIA for PMTs

• Two functions of mining tests
 • Demonstrate technical and operational capability of contractor
 • Enable contractors and ISA to make environmental and economic projections about commercial production

• Testing context:
 • Least understanding of ecosystem dynamics, consequences of impacts
 • Least understanding of equipment and process
 • No prior opportunity to test mitigation/risk/emergency measures

• PMT≠ a single test. Refers to an iterative process over a specific period of time.
Issue 3: Challenges of EIA for PMTs

• Specific problem for PMT: EIA under draft Exploitation Regs concerns impacts of commercial production, not impacts of development phase → PMT needs specific EIA procedures

• Purpose of EIA not just to prevent harm to the marine environment
 • Also iterative to support technical innovation, find correct development path
 • Provides essential inputs for SEA, site-specific EIAs, adaptive management

• But: EIA needs clear feedback loops for adaptive decision-making, and consistent, comparable assessment and monitoring methodologies

• TRL approach helps target EIA concerns at each step in PMT
 • TRL 5: technical alternatives, BAT, should tech be “up-scaled”?
 • TRL 6: sites for installations, reference zones, site-specific mitigation
 • TRL 7: entire process chain at commercial scale, prior to production, review of knowledge integration from previous stages, test risk management
TRLs and Potential EIA Stages for PMT

DISCUSSION:

Can TRLs be used to structure a multi-phase EIA obligation?

What specific EIA obligations should apply to PMT?
Issue 4: Use of PMT Information by ISA

• Currently no clear mechanism how PMT results are to be used by ISA
• Single-stage application for exploitation license in Draft Exploitation Regs
 • neglects two phases of exploitation: development and commercial production
 • approves production before development has even started
• Involves huge assumptions based on inadequate information:
 • Results from testing during exploration are wrong scale, but at right location
 • Testing at right scale cannot legally be conducted at right location prior to approval of
 exploitation application, results therefore obtained under different conditions
• Is this a well-founded decision-making process?
• Controlled, highly regulated PMT in development phase – at commercial
 scale – would greatly improve knowledge base for decision-making on
 future DSM
Issue 4: Use of PMT Information by ISA

• UNCLOS originally provided for “production authorization” after development (interim period) – different purpose, interesting procedure

• Could create a two-stage application process for exploitation
 1. Decision to allow commercial-scale PMT on basis of small-scale PMT during exploration
 2. Decision on production based on successful conclusion of PMT, after real observation of technology at correct site and scale and monitoring of impacts

• Advantages:
 • Would give ISA tool to disapprove of different mining practices – not just mining sites
 • Would compel good early EIAs, pursuit of least harmful technology
 • Could reverse the burden of proof in the second application stage – applicant must show PMT was not harmful in order to receive production authorization
 • Provides additional mechanism to support adaptive management

• Legal basis: Authority can take any measure in Part XI at any time to ensure compliance and exercise control (Art. 153 (4) and (5))
Synthesis: TRLs, EIA and Production Authorization

DISCUSSION:
How can the ISA make better use of PMT information in decision-making?
Should exploitation require a two-stage application process?
Thank you for your feedback!

katherine.houghton@iass-potsdam.de