Fauna of Cobalt-Rich Ferromanganese Crust Seamounts

Technical Study: No. 8

ISA TECHNICAL STUDY SERIES

Technical Study No. I

Global Non-Living Resources on the Extended Continental Shelf: Prospects at the year 2000

Technical Study No. 2

Polymetallic Massive Sulphides and Cobalt-Rich Ferromanganese Crusts: Status and Prospects

Technical Study No. 3

Biodiversity, Species Ranges and Gene Flow in the Abyssal Pacific Nodule Province: Predicting and Managing the Impacts of Deep Seabed Mining

Technical Study No. 4

Issues associated with the Implementation of Article 82 of the United Nations Convention on the Law of the Sea

Technical Study No. 5

Non-Living Resources of the Continental Shelf Beyond 200 Nautical Miles: Speculations on the Implementation of Article 82 of the United Nations Convention on the Law of the Sea

Technical Study No. 6

A Geological Model of Polymetallic Nodule Deposits in the Clarion-Clipperton Fracture Zone

Technical Study No. 7

Marine Benthic Nematode Molecular Protocol Handbook (Nematode Barcoding)

Fauna of Cobalt-Rich Ferromanganese Crust Seamounts

ISA TECHNICAL STUDY: No. 8

International Seabed Authority Kingston, Jamaica The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the International Seabed Authority concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers or maritime boundaries.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Application for such permission, with a statement of purpose and the extent of the reproduction, should be addressed to the International Seabed Authority, 14-20 Port Royal Street, Kingston, Jamaica.

National Library of Jamaica Cataloguing-in-Publication Data

Fauna of Cobalt-rich ferromanganese crust seamounts : report / [prepared for the International Seabed Authority by Malcolm Clark ... [et al.]].

p. : col. ill., maps ; cm. – (ISA technical study; 8) Bibliography : p. ISBN: 978-976-95268-7-7 (pbk)

I. Seamount animals 2. Marine animals 3. Marine mineral resources
4. Submarine topography 5. Oceanography
I. Clark, Malcolm II. Series
578.77 – dc 22

Copyright © International Seabed Authority 2011

International Seabed Authority 14-20 Port Royal Street Kingston, Jamaica Tel: (876) 922 9105, Fax: (876) 922 0195 Website: http://www.isa.org.jm

Photo of coral *Calyptrophora alpha* with squat lobsters and a feather star courtesy of Hawai'i Undersea Research Laboratory

Table of Contents

List of Figures	. iv
List of Tables	. iv
Foreword	. v
Executive Summary	. vi
I. Background	. I
2. Methods	. 5
3. Results	15
4. Discussion	71
5. References	79

List of figures

Figure I	Location of dive sites
Figure 2	Multidimensional scaling (MDS) on presence/absence transformed data from full HURL dataset
Figure 3	Number of dives per location (a) and length of bottom time per dive (b) of Pisces 4 and Pisces 5 submersible dives versus the total number of species
Figure 4	Species accumulation curves for dives on Cross Seamount
Figure 5	Cluster dendrogram of the reduced presence/absence invertebrate data
Figure 6	MDS plot of the reduced presence/absence invertebrate data
Figure 7	MDS plot of the reduced presence/absence invertebrate data
Figure 8	MDS plot of the reduced presence/absence invertebrate data overlaid with values for average depth of dive and bubbles that increase in size with increasing depth
Figure 9	Cluster dendrogram of the reduced presence/absence invertebrate data by depth zone
Figure 10	Representative images of Porifera 'species'
Figure	Representative images of Cnidaria 'species'
Figure 12	Representative images of Mollusc 'species'
Figure 13	Representative images of Crustacea 'species'
Figure 14	Representative images of Echinoderm 'species'
Figure 15	Representative images of Chondrichthyes 'species'
Figure 16	Representative images of Osteichthyes 'species'
List of ta	bles
Table I	Summary of data examined for this study
Table 2	Summary of location and dive information for final dataset used for multivariate analyses
Table 3	Summary of number of 'species' recorded from all dives broken down by phylum

- Table 4
 Full list of 'species' recorded from cobalt-rich and non cobalt-rich sites in this study
- Table 5
 Results of BIOENV analyses of the reduced dataset for each single variable
- Table 6
 Species contributing the most to similarity within a given depth zone
- Table 7
 Species that had consistently the largest contribution to distinguishing depth zones

Foreword

A principal function of the International Seabed Authority is to regulate deep seabed mining and to give special emphasis to ensuring that the marine environment is protected from any harmful effects which may arise during mining activities, including exploration. Recent developments have highlighted the potential of cobalt-rich ferromanganese crusts as a deep-sea mineral resource.

Seamounts in the central-west Pacific Ocean are known to have thick, cobalt-rich ferromanganese crusts. These are of commercial interest for mining. However, very little is known about the faunal communities on these seamounts, and in particular whether they could be different from those that occur on seamounts which do not have thick cobalt-rich crusts. Such information is fundamental to evaluating the potential impacts of mining operations, and formulating environmental guidelines for mining operations. This study was commissioned by the International Seabed Authority to assess patterns of community composition and diversity on seamounts with, and without, cobalt-rich crusts, and the factors that determine these patterns.

This study has provided a considerable advance in the knowledge of the biodiversity of cobalt-rich crusts, and factors that might drive community composition. However, the database and analyses can be expanded to improve the results. In particular, data on substrate type can be incorporated, and analyses can extend beyond presence-absence to include abundance. It is important to examine both of these factors in order to confirm the implication of the present study; that there is no effect of crust composition on the fauna. A workshop is planned in 2011 to review the present results, and to undertake further analyses.

This report was prepared for the International Seabed Authority by Malcolm Clark (NIWA, New Zealand), Christopher Kelley (Hawaiian Underwater Research Laboratory, USA), Amy Baco (Florida State University, USA) and Ashley Rowden (NIWA, New Zealand). The views expressed are those of the authors and do not necessarily reflect those of the International Seabed Authority. The Authority expresses it appreciation to the Census of Marine Life Programme on Seamounts (CenSeam) for its cooperation in making this study possible.

Executive Summary

Seamounts in the central-west Pacific Ocean are known to have thick, cobalt-rich ferromanganese crusts. These are of commercial interest for mining. However, very little is known about the faunal communities on these seamounts, and in particular whether they could be different from those that occur on seamounts which do not have thick cobalt-rich crusts. Such information is fundamental to evaluating the potential impacts of mining operations, and formulating environmental guidelines for mining operations. This study was commissioned by the International Seabed Authority in order to assess patterns of community composition and diversity on seamounts with, and without, cobalt-rich crusts, and the factors that determine these patterns.

Video data were extracted from submersible and ROV dives carried out by the Hawaiian Underwater Research Laboratory on a range of seamount features in the Hawaiian Archipelago between 1983 and 2003. There were 270 dives covering 33 locations, comprising a mixture of potentially commercial cobalt-rich and non cobalt-rich crust sites. Data were checked and edited, and a final total of over 30,000 observational records were extracted.

There were 967 'species' identified from all the dives combined. The majority of these were Cnidarians (corals, anemones and related taxa) with 287 species, Osteichthyes (bony fishes) with 252, Echinoderms (such as starfishes.) with 154, and Crustaceans (crabs, shrimps) with 106. The species seen varied between locations, with 209 recorded only from cobalt-rich sites, 271 from non cobalt-rich sites, and 487 seen at both types of crust sites. A full list of recorded species is provided, showing occurrence on grouped cobalt-rich and non cobalt-rich sites.

Preliminary analyses revealed differences in data between the sampling vehicles, and so a reduced set of presence-absence observations was compiled from just Pisces 4 and Pisces 5 submersible dives for more detailed analysis. This reduced dataset comprised 13,000 records of invertebrate megafauna from 81 dives at 16 sites. Multivariate analyses showed no significant difference in the invertebrate community composition between cobalt-rich and non cobalt-rich sites. However, there was considerable variation between locations. The main determinant of community composition was depth, with three zones defined: approximately 200–350 m; 360–600 m; and 750–1800 m. Cniderian species, especially corals, were commonly the characterizing or discriminating species in these faunal assemblages.

Almost 200 images taken in situ of the main species, or reperesentative species of the major taxa, are provided for Porifera, Cnideria, Mollusca, Crustacea, Echinodermata, Chondrichthyes and Osteichthyes.

Overall, the study has provided a considerable advance in our knowledge of the biodiversity of cobalt-rich crusts, and factors that might drive community composition. However, the database and analyses can be expanded to improve the results. In particular, data on substrate type can be incorporated, and analyses can extend beyond presence-absence to include abundance. It is important to examine both of these factors in order to confirm the implication of the present study; that there is no effect of crust composition on the fauna. A workshop is planned in 2011 to review the present results, and to undertake further analyses.

CHAPTER ONE	Background

I. Background

Seamounts are prominent features of the world's underwater topography. It is estimated there may be as many as 100,000 large seamounts (with an elevation of 1,000 m or greater) (Wessel, 2001), distributed throughout the world's oceans (e.g. Kitchingman et al., 2007), where they provide physically isolated benthic marine habitats in otherwise pelagic and midwater regions. Because of the isolated geographic nature of these habitats, seamounts (as well as ridges, banks and oceanic islands) have been hypothesized to be locations where speciation occurs in deep-sea fauna (e.g. Hubbs, 1959; Wilson and Kaufmann, 1987). Many seamounts and seamount chains have been reported to have high levels of faunal endemicity (Rogers, 1994; Parin et al, 1997; Richer de Forges et al, 2000), although several recent studies and reviews show that this cannot be taken as a generalisation for all seamounts (e.g. Samadi et al, 2006; O'Hara, 2007; Stocks and Hart, 2007; McLain, 2007). Nevertheless, seamounts and similar offshore features are widely accepted as potentially playing an important role in the ecology of the deep-sea (Clark et al, 2010).

Seamounts are well known to attract concentrations of fish, which form the basis of numerous commercial fisheries (e.g. Clark et al, 2007a; Da Silva and Pinho, 2007). However, they are also increasingly of interest for the exploitation of their mineral resources (United Nations-ISA, 2004). Polymetallic massive sulphide deposits can form on seamounts with black smoker and other volcanic activity (e.g. Herzig and Petersen, 2002; Herzig, 2007), and cobalt-rich ferromanganese crusts occur on seamounts, ridges and plateaus where crust minerals precipitate out onto rocky surfaces that currents sweep clean of sediments over long periods (Hein, 2002). These crusts occur universally on exposed rocks throughout the oceans, but form thick pavements (up to 250 mm thick) primarily on large seamounts and guyots in the western and central Pacific Ocean (Hein, 2002; Zhou, 2007; Hein, in press). The chemical composition of the crusts can be high in manganese and iron, and this could have an effect on the animals able to live in such a habitat. Very little research has been conducted on the influence of the chemical composition of a hard substratum on seabed communities. Veillette et al (2007) found no clear relationship between fauna and the geochemical composition of the outer surface of polymetallic nodules from different areas of the seabed. However, they were not able to compare the composition of nodule fauna with that of other hard substratum types at the same water depths. The biological communities associated with the particular chemical environment at, and surrounding, active hydothermal vents have been extensively studied in recent decades (e.g. Van Dover, 2000) but much less is known about the fauna of cobalt-rich crusts on seamounts (Grigg et al., 1987).

Seamount benthic communities are vulnerable to human activities. Bottom trawling and long-lining have been shown to have significant impact on seamount communities, particularly on sedentary structure-forming corals and sponges (e.g. Koslow et al, 2001; Clark and Koslow, 2007; Rowden and Clark, 2009), and the slow growth of such taxa (e.g. Rogers et al., 2007) can prolong recovery from impact. This further highlights the need for scientific data on the ecology and

ecosystem function of seamount communities in order to inform appropriate management.

The International Seabed Authority (ISA) has the mandate under the United Nations Convention on the Law of the Sea (UNCLOS) to regulate exploration for, and exploitation of, marine mineral resources in 'The Area' which is beyond the boundaries of national jurisdiction. It has held a number of workshops since 2000, most notably in 2004 and 2006, to bring together available information on the geology and biology of cobalt-rich ferromanganese crusts found predominantly on seamounts in the central-northern Pacific Ocean (CNP). However, it has become clear that seamounts worldwide have been poorly sampled (e.g. Stocks et al, 2004; Clark, 2009), and that very little is known about the CNP seamounts in particular (Koslow, 2007). Much more information was needed to describe and understand the composition of seamount communities, and subsequently to ascertain the potential impact of exploration and mining of these seamount deposits, and to develop robust environmental guidelines for exploration. This has been one of the objectives of the Census of Marine Life programme on seamounts ('CenSeam') (Clark et al, 2007b).

During the ISA workshop in 2006, CenSeam reviewed available data and potential sources of information that could help improve our knowledge of cobalt-rich crust communities, and subsequently gained funding from the ISA to undertake the present study to compile available information on seamounts in the cobalt-rich zone of the CNP from the dive archives of the Hawaii Undersea Research Laboratory (HURL). These dives cover the Hawaiian Archipelago, a portion of which falls within the cobalt-rich zone. The HURL database, therefore, represents a previously untapped source and the best available data on the fauna of cobalt-rich seamounts and other features, and also includes data on features from the non cobalt-rich portion of the Archipelago for comparison. The database includes data not just on seamounts, but also on other seamountlike features including oceanic islands, atolls and banks, and so also provides insights into the degree of uniqueness of the fauna on cobalt-rich seamounts as compared to that of nearby features.

Study objectives

- 1) To assess patterns of community composition and diversity of fauna at cobalt-rich and non cobalt-rich sites, and the factors that determine these patterns.
- 2) To examine gaps in current knowledge of these patterns with a view to encouraging collaborative research to address them.
- 3) To provide the ISA with recommendations to input into formulation of environmental guidelines for future mining contractors.

CHAPTER TWO	Methods

2. Methods

Data

All data used for this study come from the HURL submersible and ROV video logging database. Data were extracted from dives conducted in the Hawaiian Archipelago and nearby seamounts between 1983 and 2003 by the RCV-150 remotely operated vehicle (ROV) and the Makali'i, Pisces 4, and Pisces 5 submersibles. Data selection was discussed with Dr Jim Hein (United States Geological Service), and only dives with data collected from depths greater than 200 m were included in this analysis (shallow, younger, seamounts were thought to have little prospect of having thick cobalt crust). The sites included a mixture of cobalt-rich and non cobalt-rich seamounts. These were defined on the basis of their potential for mining, and hence considered seamount size and shape as well as likely cobalt concentration. The use of the terms "cobalt-rich" and "non cobalt-rich" in this report is therefore not to be treated solely as an indication of cobalt richness in the crust. The selected portion of the database included 30,652 records for 270 dives at 33 locations (Table 1). "Location" refers to an individual feature (seamount, island, atoll or bank). The geographical distribution of cobaltrich and non cobalt-rich sampling locations is shown in Figure 1.

Each data record consisted of a single row of a Microsoft Excel file, with each species/operational taxonomic unit (hereafter referred to as 'species') observed in a five-minute interval recorded as a separate row. Five-minute intervals with no taxa were recorded as a single row with "none" in the species column. These data were included along with additional columns to record vehicle, dive number, date, site position, observation interval, organism type degree of certainty of species identification, and depth.

Before analysis the database was modified as follows: a) typographical errors and misspellings were corrected; b) taxa with the same species designations but different higher-level taxon designations were made uniform; c) all records with no taxa observed were removed (this is useful information, but not for this particular analysis); and d) all records that listed a taxon as, or were inferred as, "dead" were removed.

Location	Cobalt	Makali'i	Pisces 4	Pisces 5	ROV
Johnson Atoll	CR	34 (558)			
Cross Seamount	CR		4 (1846)	40 (1691)	3 (149)
Bishop Seamount	CR			(46)	
Pensacola Seamount	CR			(103)	
East Necker Seamount	CR			2 (1466)	5 (291)
Necker	CR	3 (48)			
East French Frigate Shoals	CR		(361)	5 (2618)	6 (354)
French Frigate Shoals	CR	6 (122)			
Bank 66	CR	3 (125)	(152)		(31)
North FFS Seamount	CR			(178)	
Baby Brooks Bank	CR	2 (38)	3 (485)	4 (854)	7 (211)
Nihoa	CR		6 (826)		5 (106)
WestPac Bank	CR			4 (1681)	I (36)
East Twin Banks	CR			(194)	
West St Rogatien Bank	NCR		3 (504)	5 (1409)	10 (247)
Raita Bank	NCR		3 (542)	8 (1996)	13 (594)
Maro Reef	NCR		6 (1344)		8 (347)
East Laysan Seamount	NCR			4 (1638)	
Laysan Bank	NCR				8 (277)
Laysan Island	NCR			(169)	l (64)
East Northhampton Seamount	NCR		2 (404)		3 (52)
West Northhampton Seamount	NCR		2 (316)		2 (40)
Pioneer Bank	NCR			6 (2455)	5 (298)
Pioneer Ridge	NCR				2 (65)
West Lisianski Bank	NCR		(351)	2 (432)	4 (212)
East Salmon Seamount	NCR				I (238)
Salmon Bank	NCR			l (85)	l (65)
Pearl and Hermes Atoll	NCR		(67)		
Ladd Seamount	NCR		(197)		
Nero Seamount	NCR		(201)	2 (240)	2 (123)
Kure Atoll	NCR				2 (35)
North Kure Bank	NCR		(3)	(177)	2 (37)
Northwest Kure Bank	NCR		I (254)	2 (544)	l (58)

 $\label{eq:table_l} \textbf{Table I.} Summary of data examined for this study. The number of dives per features is supplied, with the number of faunal observations in parentheses. CR=cobalt-rich, NCR=non cobalt-rich and the number of faunal observation of the number of faunal observation of the number of faunal observation of the number of t$

Specimen photographs

Representative images of the identified species have been taken as frame-grabs from the footage for inclusion in a HURL reference guide to the common fauna of the region. A selection was made from the HURL images for inclusion here to enable the reader to visualize the main species or taxa.

Figure 1. Location of dive sites

Legend: Sites highlighted in yellow are cobalt-rich sites; those in white are non cobalt-rich sites.

Data pretreatment and multivariate analyses

The modified database was converted to a species by sample matrix, with individual dives as the samples, using the Excel function "Pivot Table". The Excel file was then transferred to the software package PRIMER 6.1.11 (Clarke and Gorley, 2006) for multivariate statistical analyses. All functions and routines discussed below are a part of the PRIMER software package (see references in Clarke and Warwick, 2001). Additional information for dive location, cobalt site designation, feature type (e.g. seamount, atoll, bank), average depth of dive, minimum depth of dive, maximum depth of feature, were extracted from the database and HURL dive logs. These data and vehicle types were then used to construct PRIMER "Environmental" and "Factors" datasets.

Over the course of the 20 years of the database compilation and changes in technology, abundance data and time intervals were not consistently logged across vehicles. There were also multiple cameras on the submersibles and individual organisms may have been observed by more than one camera. These animals would be counted twice and therefore abundance counts from the database would not accurately reflect actual numbers. Because of these issues, the dataset was converted to a presence/absence dataset. This conversion was done using the PRIMER "transform data" function. A ranked similarity matrix was then constructed for the presence/absence data using the Bray-Curtis similarity algorithm. A matching matrix was created for the environmental data using a Euclidean distance metric.

Because there was a difference in camera arrangement, camera type and logging method between the four vehicles used to create the video log, an Analysis of Similarity (ANOSIM, multivariate equivalent of ANOVA) was first carried out using the entire dataset (including fish) to test the null hypothesis that there was no difference in faunal community composition with vehicle type. The null hypothesis was rejected (Global R= 0.295, p = 0.001) and a multidimensional scaling (MDS) ordination plot showed the clear pattern of difference between most vehicle types (Figure 2). However, the pairwise ANOSIM result revealed that there is no difference in community composition between submersibles Pisces 4 and Pisces 5 (R= -0.026, p = 0.724). Based on the latter result, a new dataset was constructed of data from only the Pisces 4 and Pisces 5 submersible dives in order to avoid confounding further analyses by vehicle type.

Figure 2. Multidimensional scaling (MDS) on presence/absence transformed data from full HURL dataset

Legend: Individual points represent a single dive. Data cluster by vehicle, although those from Pisces 4 and 5 overlap and are not significantly different.

For the remaining multivariate analyses, the following modifications were made to the Pisces 4 and 5 dataset in order to improve the robustness of the planned tests: a) all taxa with a certainty of species identification score of 4 ("problematic") or blank were removed from the dataset to improve taxonomic consistency; b) all fish taxa were removed from the dataset as the focus of this study is on benthic invertebrates; c) all locations with only a single dive were removed because the ANOSIM test requires more than one sample per factor; d) the maximum number of dives per location was set at ten (ten dives out of 38 dives were selected at random from Cross Seamount) in order to remove a positive linear relationship between number of dives and number of species (Figure 3a), and to provide a more balanced design for the ANOSIM test; and e) dives with < 3 species were removed, revealed to be obvious outliers in a preliminary assessment of the MDS P4 106–1 species and P5 462–3 species. The remaining dives had a minimum of six species per dive.

A plot of length of time on the bottom for each dive versus number of species was also examined to determine if bottom time affected sampling results. There was no correlation between bottom time and number of species (Figure 3b), so no additional dives were removed based on bottom time.

Species accumulation curves indicated that even selecting ten dives would not fully describe the fauna at a location. The plot of species against number of dives for Cross Seamount shows the curve still rising (Figure 4), and continues with no asymptote to the total number of dives.

Figure 3. Number of dives per location (a) and length of bottom time per dive (b) of Pisces 4 and Pisces 5 submersible dives versus the total number of species

The reduced dataset for the formal multivariate analysis consisted of 13,175 records, 81 dives, 16 locations and 448 species. Of the 16 locations, six were cobalt-rich, and 10 non cobalt-rich. Dive sites at sampling locations covered a wide range of depths (Table 2). Modified PRIMER "Environmental" and "Factor" datasets were produced for the reduced dataset.

Note: several methods of calculation are plotted, note some give nearly identical results and are not visible.

A two-way nested ANOSIM test was carried out to test for differences in community composition between cobalt-rich and non cobalt-rich site groups, and between locations within these groups. MDS ordination plots and the routine CLUSTER, which creates a hiercharchial dendrogram of the group-average clustering of sites, were used to visualize the results. The relationships between the community composition and the environmental variables were investigated using the BIOENV correlation procedure. The species contributing to the similarity and dissimilarity between sites within different depth zones (nested within location groups) were investigated using the similarity of a community, or 'discriminated' the dissimilarity between communities were those for which the ratio of the average similarity/dissimilarity to the standard deviation was > 1.3 (Clarke and Warwick, 2001).

Location	Lat. N	Lon. W	Cobalt	Feature	Summit Depth (m)	N. Dive	Depth Range (m)	N. Species	PI
Baby Brooks Bank	24.0	166.7	CR	Bank	54	7	200-552	102	Kelley,Parrish, Baco,Dollar
Cross Smt	18.7	158.3	CR	Seamount	352	10	372- 1755	80	Cowen, Malahoff Baco, Mullineaux Grigg, Parrish
E French Frigate Shoals	23.9	165.3	CR	Island Bank	358	6	346-684	137	Baco,Parrish
E Necker	23.3	163.6	CR	Seamount	414	2	1076- 1808	112	Baco
Nihoa	23.2	161.8	CR	Emergent	0	6	319- 1240	68	Smith
WestPac Bank	23.3	162.6	CR	Bank	339	4	285-521, 1000- 1817	115	Baco,Parrish
E Laysan Smt	25.7	171.4	NCR	Seamount	171	4	35- 808	115	Baco
E Northampton	25.3	172.0	NCR	Seamount	30	2	278- 1044	76	Parrish
Maro Reef	25.5	170.4	NCR	Emergent	0	6	322- 1045	66	Baco,Smith
Nero Smt	27.9	177.9	NCR	Seamount	67	3	279-734	42	Baco,Parrish
NW Kure Bank	28.9	179.6	NCR	Bank	362	3	204-595	67	Baco,Parrish
Pioneer Bank	25.8	173.5	NCR	Bank	37	6	405- 1825	164	Baco
Raita Bank	25.5	169.6	NCR	Bank	18	10	200-586	95	Kelley,Baco
W Lisianski Bank	26.3	174.5	NCR	Bank	70	3	300-760	75	Baco
W Northampton	25.5	172.3	NCR	Seamount	38	2	240-863	48	Parrish
W St Rogatien Bank	24.5	167.3	NCR	Bank	55	8	200-567	60	Kelley

Table 2. Summary of location and dive information for final dataset used for multivariate analyses

CHAPTER THREE	Results

3. Results

Seamount fauna

There were 967 'species' identified from all the dives combined. The majority of these were Cnidarians (corals, anemones and related taxa) with 287 species (Table 3), Osteichthyes (bony fishes) with 252, Echinoderms (starfishes etc) with 154, and Crustaceans (crabs, shrimps) with 106. The species seen varied between locations, with 209 recorded only from cobalt-rich sites, 271 from non cobalt-rich, and 487 seen at both types of crust sites.

 Table 3. Summary of number of 'species' recorded from all dives broken down by phylum, the numbers seen only at cobalt-rich or non-cobalt-rich sites, and the number recorded at both types of habitat

Phylum	Total	Cobalt-rich	Non cobalt-rich	Both
Algae	7	2	I	4
Protozoa	1	0	I	0
Porifera	82	20	18	44
Cnidaria	287	74	68	145
Ctenophora	2	0	0	2
Annelida	6	2	I	3
Mollusca	36	10	15	11
Arthropoda Chelicerata	1	0	I	0
Arthropoda Crustacea	106	25	37	44
Echiura	1	0	I	0
Bryozoa	T	T	0	0
Echinodermata	154	36	48	70
Tunicata	5	0	3	2
Chondrichtyes	26	3	9	14
Osteichthyes	252	36	67	149
Mammalia	I	0	I	0
Total	967	209	271	487

The full list of species is given in Table 4, with the number of observations reported for the combined locations grouped into cobalt-rich and non cobalt-rich. The numbers should not be interpreted as any indication of abundance (see explanation in the methods section, above) but they help give a general impression of relative abundance; hence they are retained in preference to simply indicating presence or absence. Note that since the study was completed in 2009, some species names may have been changed or revised.

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Algae	algae	algae	127	64
Algae	chlorophyta	chlorophyta	3	2
Algae	chlorophyta	Ulva fasciata	I	
Algae	chlorophyta	Ulva sp	2	2
Algae	rhodophyta	rhodolith		2
Algae	rhodophyta	rhodophyta	I	4
Algae	rhodophyta	rhodophyta coralline	3	
Protozoa	xenophyophore	xenophyophore		2
Porifera	corallistid	Corallistes sp		I
Porifera	demospongiid	demospongiid knob	3	4
Porifera	demospongiid	demospongiid red		I
Porifera	demospongiid	demospongiid white	I	
Porifera	demospongiid	demospongiid yellow	11	
Porifera	euplectellid	Bolosoma sp	16	3
Porifera	euplectellid	Bolosoma sp cf	I	
Porifera	euplectellid	Bolosoma sp I	I	
Porifera	euplectellid	Bolosoma sp2	I	
Porifera	euplectellid	bolosominae	9	3
Porifera	euplectellid	Corbitellinae n sp	14	I
Porifera	euplectellid	Dictyaulus sp	5	
Porifera	euplectellid	Euplectella sp	18	16
Porifera	euplectellid	euplectellid	3	2
Porifera	euplectellid	euplectellid vase	I	7

Table 4.	Full list of	'species'	recorded	from	cobalt-rich	and non	cobalt-rich	sites ir	n this	study
----------	--------------	-----------	----------	------	-------------	---------	-------------	----------	--------	-------

Table 4. Ctnd...

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Porifera	euplectellid	Hertwigia sp cf	13	4
Porifera	euplectellid	Regadrella sp	41	52
Porifera	euplectellid	Regadrella sp l	18	13
Porifera	euplectellid	Regadrella sp3	9	2
Porifera	euplectellid	Saccocalyx sp	I	
Porifera	euplectellid	Saccocalyx sp cf	2	14
Porifera	euplectellid	Sericolophus hawaiicus	17	59
Porifera	euplectellid	Walteria flemmingi		T
Porifera	euplectellid	Walteria leuckarti	2	
Porifera	euplectellid	Walteria sp	5	45
Porifera	euplectellid	Walteria sp3	I	
Porifera	euplectellid	Walteria sp2		T
Porifera	euplectellid	Walteria sp4	3	1
Porifera	euretid	chonelasmatinae club cf	I	
Porifera	euretid	chonelasmatinae ribbon cf	18	44
Porifera	euretid	chonelasmatinid	4	87
Porifera	euretid	Endorete sp	8	8
Porifera	euretid	euretinid	I	5
Porifera	farreid	fareid n genus		8
Porifera	farreid	Farrea occa	35	19
Porifera	farreid	Farrea sp	13	13
Porifera	farreid	Farrea sp I		23
Porifera	farreid	farreid		24
Porifera	farreid	farreid stalked cf		I
Porifera	hexactinellid	hexactinellid	199	83
Porifera	hexactinellid	hexactinellid columnar		9
Porifera	hexactinellid	hexactinellid cone	I	
Porifera	hexactinellid	hexactinellid cup	16	9
Porifera	hexactinellid	hexactinellid dish	I	2

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Porifera	hexactinellid	hexactinellid fuzzy		I
Porifera	hexactinellid	hexactinellid ruffle		2
Porifera	hexactinellid	hexactinellid shell		I
Porifera	hexactinellid	hexactinellid spiny club		I
Porifera	hexactinellid	hexactinellid square-top	2	
Porifera	hexactinellid	hexactinellid stalked	8	7
Porifera	hexactinellid	hexactinellid stalked bowl	14	T
Porifera	hexactinellid	hexactinellid stalked tulip	2	
Porifera	hexactinellid	hexactinellid tan	7	T
Porifera	hexactinellid	hexactinellid unknown		I
Porifera	hexactinellid	hexactinellid vase	7	2
Porifera	hexactinellid	hexactinellid waffle	2	
Porifera	hexactinellid	hexactinellid white	5	6
Porifera	petrosiid	Petrosia sp	I	
Porifera	pheronematid	pheronematid	8	15
Porifera	pheronematid	pheronematid sp2	22	99
Porifera	pheronematid	Platylistrum platessa	146	42
Porifera	pheronematid	Poliopogon sp	7	73
Porifera	pheronematid	Poliopogon sp I	3	T
Porifera	pheronematid	Poliopogon sp2	13	5
Porifera	pheronematid	Poliopogon sp3	I	4
Porifera	pheronematid	Semperella schultzei	14	46
Porifera	pheronematid	Semperella sp	7	5
Porifera	pheronematid	Semperella sp2	8	
Porifera	rosellid	rosellid	2	
Porifera	rossellid	Basthydorus sp		I
Porifera	rossellid	Caulophacus sp	9	1
Porifera	rossellid	Caulophacus sp l	6	1
Porifera	rossellid	Trichasterina sp I	22	16

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Porifera	rossellid	Trichasterina sp2	1	
Porifera	sponge	sponge	5	4
Porifera	sponge	sponge barrel	I	
Porifera	sponge	sponge blue		2
Porifera	sponge	sponge cup		I
Porifera	sponge	sponge orange tube		T
Porifera	sponge	sponge white	97	3
Porifera	tretodictyid	tretodictyid	81	12
Porifera	tretodictyid	tretodictyid waffle	32	
Cnidaria	acanthogorgiid	Acanthogorgia sp	18	12
Cnidaria	acanthogorgiid	Acanthogorgia striata	12	
Cnidaria	actinemid	Actinernus nobilis	15	
Cnidaria	actiniid	Stylobates aenus	2	7
Cnidaria	actinoscyphiid	Actinoscyphia sp		3
Cnidaria	actinoscyphiid	Actinoscyphia sp2	2	1
Cnidaria	actinoscyphiid	Actinoscyphia sp3	7	
Cnidaria	actinostolid	actinostolid	4	1
Cnidaria	actinostolid	actinostolid orange		1
Cnidaria	actinostolid	actinostolid tan	31	11
Cnidaria	alcyonacean	alcyonacean	1	4
Cnidaria	alcyonacean	alcyonacean red	7	2
Cnidaria	alcyonacean	alcyonacean red striped		1
Cnidaria	alcyonacean	alcyonacean white		1
Cnidaria	alcyoniid	Anthomastus fisheri	22	18
Cnidaria	alcyoniid	Anthomastus robusta		I
Cnidaria	alcyoniid	Anthomastus sp	2	75
Cnidaria	alcyoniid	Anthomastus sp red	2	11
Cnidaria	alcyoniid	Anthomastus steenstrupi		3
Cnidaria	alcyoniid	Anthomastus white		2

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	alcyoniid	Bellonella molokaiensis	3	
Cnidaria	anemone	anemone	5	158
Cnidaria	anemone	anemone banded	I	T
Cnidaria	anemone	anemone barred	I	
Cnidaria	anemone	anemone black	I	
Cnidaria	anemone	anemone brown	47	3
Cnidaria	anemone	anemone burrowing		T
Cnidaria	anemone	anemone clonal	28	
Cnidaria	anemone	anemone clonal brown		T
Cnidaria	anemone	anemone gray	2	
Cnidaria	anemone	anemone orange	32	37
Cnidaria	anemone	anemone orange small		I
Cnidaria	anemone	anemone purple	4	I
Cnidaria	anemone	anemone red	I	3
Cnidaria	anemone	anemone tan	2	
Cnidaria	anemone	anemone white	5	
Cnidaria	anthemiphyllid	Anthemiphyllia macrolobata		2
Cnidaria	anthoptilid	Anthoptilum grandiflorum cf		2
Cnidaria	anthoptilid	Anthothela nuttingi	15	2
Cnidaria	antipatharian	antipatharian	16	5
Cnidaria	antipatharian	Cirrhipathes sp	I	
Cnidaria	antipatharian	Cirrhipathes/Stichopathes	39	189
Cnidaria	antipatharian	Dendropathes/Myriopathes	8	I
Cnidaria	antipathid	Antipathes griggi	3	
Cnidaria	antipathid	Antipathes sp	25	9
Cnidaria	antipathid	Antipathes subpinnata	7	3
Cnidaria	antipathid	antipathid		5
Cnidaria	antipathid	Aphanipathes sp I	63	5
Cnidaria	antipathid	Stichopathes sp	6	3

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	boloceroid	Bolocera sp cf	2	
Cnidaria	boloceroid	Boloceroides daphneae	I	
Cnidaria	caryophylliid	Caryophyllia diomedeae		5
Cnidaria	caryophylliid	Caryophyllia rugosa	3	
Cnidaria	caryophylliid	caryophylliid	2	5
Cnidaria	caryophylliid	Desmophyllum dianthus	3	21
Cnidaria	caryophylliid	Trochocyathus aithoseptatum	6	
Cnidaria	ceriantharian	ceriantharian		I
Cnidaria	cerianthid	Aracnanthus sp	2	
Cnidaria	cerianthid	cerianthid	I	4
Cnidaria	cerianthid	cerianthid banded		6
Cnidaria	cerianthid	cerianthid brown	I	I
Cnidaria	cerianthid	cerianthid cf		I
Cnidaria	cerianthid	cerianthid gray	I	
Cnidaria	cerianthid	cerianthid green	I	
Cnidaria	cerianthid	cerianthid tan	I	
Cnidaria	chrysogorgiid	Chrysogorgia chryseis	3	
Cnidaria	chrysogorgiid	Chrysogorgia geniculata	9	5
Cnidaria	chrysogorgiid	Chrysogorgia sp	8	9
Cnidaria	chrysogorgiid	Chrysogorgia stellata	I	15
Cnidaria	chrysogorgiid	chrysogorgiid	I	67
Cnidaria	chrysogorgiid	Iridogorgia bella	25	54
Cnidaria	chrysogorgiid	Iridogorgia magnispiralis cf	37	I
Cnidaria	chrysogorgiid	Iridogorgia sp	32	24
Cnidaria	chrysogorgiid	Metallogorgia melanotrichos	76	39
Cnidaria	chrysogorgiid	Pleurogorgia militaris	I	
Cnidaria	chrysogorgiid	Radicipes spiralis cf		2
Cnidaria	chrysogorgiid	Rhodaniridogorgia superba	2	18
Cnidaria	cladopathid	Trissopathes pseudotristicha	4	2

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	clavulariid	Clavularia grandiflora		38
Cnidaria	clavulariid	Telestula corregata		2
Cnidaria	clavulariid	Telestula sp	4	
Cnidaria	clavulariid	Telestula sp2	6	
Cnidaria	clavulariid	Telestula spiculocola	I	
Cnidaria	cnidarian	cnidarian	61	26
Cnidaria	cnidarian	cnidarian orange	2	6
Cnidaria	cnidarian	cnidarian red	8	
Cnidaria	cnidarian	cnidarian white	I	I
Cnidaria	cnidarian	cnidarian white cluster	I	33
Cnidaria	cnidarian	cnidarian yellow		2
Cnidaria	coralliid	corallid yellow		I
Cnidaria	coralliid	Corallium abyssale	7	4
Cnidaria	coralliid	Corallium ducale	3	
Cnidaria	coralliid	Corallium kishinouyei	4	5
Cnidaria	coralliid	Corallium laauense	4	2
Cnidaria	coralliid	Corallium regale	159	48
Cnidaria	coralliid	Corallium secundum	71	8
Cnidaria	coralliid	Corallium secundum cf	1	
Cnidaria	coralliid	Corallium sp	88	2
Cnidaria	coralliid	Paracorallium tortuosum	9	1
Cnidaria	coralliid	Paracorallium tortuosum cf		2
Cnidaria	corallimorpharian	corallimorpharian white tipped	5	8
Cnidaria	corymorphid	Corymorpha sp	2	4
Cnidaria	dendrophylliid	Balanophyllia sp cf	5	
Cnidaria	dendrophylliid	dendrophylliid	91	19
Cnidaria	dendrophylliid	Eguchipsammia fistula	4	7
Cnidaria	dendrophylliid	Eguchipsammia fistula cf	I	
Cnidaria	dendrophylliid	Eguchipsammia serpentina		7

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	dendrophylliid	Eguchipsammia sp		7
Cnidaria	dendrophylliid	Enallopsammia rostrata	46	138
Cnidaria	flabellid	Flabellum pavoninum	I	
Cnidaria	flabellid	Flabellum sp		I
Cnidaria	flabellid	Javania lamprotichum	23	8
Cnidaria	flabellid	Javania sp	6	9
Cnidaria	flabellid	Polymyces wellsi	1	3
Cnidaria	flabellid	Truncatoflabellum sp	1	T
Cnidaria	funiculinid	funiculinid		I
Cnidaria	gardineriid	Gardineria hawaiiensis	5	13
Cnidaria	gorgonian	gorgonian	444	12
Cnidaria	gorgonian	gorgonian blue	1	
Cnidaria	gorgonian	gorgonian branched	2	5
Cnidaria	gorgonian	gorgonian brush	1	
Cnidaria	gorgonian	gorgonian fan	3	
Cnidaria	gorgonian	gorgonian leather	1	
Cnidaria	gorgonian	gorgonian maze	2	
Cnidaria	gorgonian	gorgonian purple	2	
Cnidaria	gorgonian	gorgonian red	2	I
Cnidaria	gorgonian	gorgonian tan	2	2
Cnidaria	gorgonian	gorgonian two branch		I
Cnidaria	gorgonian	gorgonian wavy stem	2	
Cnidaria	gorgonian	gorgonian white	11	7
Cnidaria	gorgonian	gorgonian white single stalk	45	
Cnidaria	gorgonian	gorgonian white small		4
Cnidaria	gorgonian	gorgonian yellow	16	2
Cnidaria	haleciid	Hydrodendron gorgonoides	8	1
Cnidaria	halipterid	Halipterus sp		17
Cnidaria	halipterid	Halipterus willemoesi	9	45

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	hormathiid	hormathiid	35	86
Cnidaria	hormathiid	hormathiid cf	I	
Cnidaria	hormathiid	hormathiid sp l	4	5
Cnidaria	hormathiid	hormathiid sp2	2	2
Cnidaria	hormathiid	hormathiid sp3	2	
Cnidaria	hormathiid	hormathiid sp4	4	I
Cnidaria	hormathiid	hormathiid sp5	3	
Cnidaria	hormathiid	hormathiid sp6		I
Cnidaria	hydrozoan	hydromedusa		T
Cnidaria	hydrozoan	hydrozoan	5	23
Cnidaria	hydrozoan	hydrozoan feather	2	1
Cnidaria	isidid	isidid	11	
Cnidaria	isidid	isidid branched	16	8
Cnidaria	isidid	isidid bushy		I
Cnidaria	isidid	isidid cf	5	
Cnidaria	isidid	isidid curly	2	
Cnidaria	isidid	isidid lyrate		1
Cnidaria	isidid	isidid lyrate n genus A	I	
Cnidaria	isidid	isidid nodal		9
Cnidaria	isidid	isidid nodal bushy orange	82	6
Cnidaria	isidid	isidid nodal lyrate	6	32
Cnidaria	isidid	isidid nodal lyrate n genus A	T	
Cnidaria	isidid	isidid nodal planar genus 3		2
Cnidaria	isidid	isidid nodal planar pink		T
Cnidaria	isidid	isidid nodal planar white		9
Cnidaria	isidid	isidid nodal spider	78	189
Cnidaria	isidid	isidid planar	7	
Cnidaria	isidid	isidid spiral	I	
Cnidaria	isidid	Keratoisis flabellum cf		45

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	isidid	Keratoisis grandis cf		11
Cnidaria	isidid	Keratoisis sp	2	9
Cnidaria	isidid	Keratoisis sp orange	I	
Cnidaria	isidid	Keratoisis sp yellow	I	
Cnidaria	isidid	Keratoisis sp4	8	
Cnidaria	isidid	Lepidisis olapa cf	33	119
Cnidaria	isidid	Lepidisis sp cf	97	238
Cnidaria	isidid	Lepidisis sp cf branched	12	33
Cnidaria	isidid	Lepidisis sp cf red	22	I
Cnidaria	isophelliid	Telmatactis sp		2
Cnidaria	kereoidid	Kereiodes mosaica	4	26
Cnidaria	kereoidid	Keroeides pallida	2	4
Cnidaria	kophobelemnid	Calibelemnon symmetricum	229	124
Cnidaria	kophobelemnid	kophobelemnid cf		T
Cnidaria	kophobelemnid	Kophobelemnon stelliferum cf	I	19
Cnidaria	leiopathid	Leiopathes sp	57	31
Cnidaria	liponematid	Liponema brevicornis	5	17
Cnidaria	liponematid	Liponema sp	6	15
Cnidaria	marianactid cf	Marianactis sp cf		2
Cnidaria	myriopathid	Myriopathes ulex	2	
Cnidaria	nemanthid cf	Nemanthus sp cf	2	
Cnidaria	nidaliid	Nidalia sp		2
Cnidaria	nidaliid	Siphonogorgia alexanderi	6	7
Cnidaria	nidaliid	Siphonogorgia collaris	5	37
Cnidaria	nidaliid	Siphonogorgia sp		I
Cnidaria	oculinid	Madrepora kauaiensis	8	49
Cnidaria	oculinid	Madrepora oculata		2
Cnidaria	oculinid	Madrepora sp		3
Cnidaria	olindidiid	Monobrachium sp		9

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	paragorgiid	Paragorgia dendroides	19	44
Cnidaria	paragorgiid	Paragorgia regalis	35	15
Cnidaria	paragorgiid	Paragorgia sp	3	
Cnidaria	paragorgiid	Paragorgia sp I	26	19
Cnidaria	paragorgiid	Paragorgia sp2	17	
Cnidaria	paramuriceid	Anthomuricea tenuispina		19
Cnidaria	paramuriceid	Bebryce brunnea	8	
Cnidaria	paramuriceid	Muriceides tenuis	2	
Cnidaria	paramuriceid	paramuriceid	5	4
Cnidaria	paramuriceid	paramuriceid blue	122	2
Cnidaria	paramuriceid	paramuriceid tan	116	24
Cnidaria	paramuriceid	paramuriceid yellow	I	
Cnidaria	parazoanthid	Gerardia sp	336	356
Cnidaria	parazoanthid	Gerardia sp cf	I	I
Cnidaria	parazoanthid	Parazoanthus sp	9	15
Cnidaria	parazoanthid	Parazoanthus sp1 brown	77	62
Cnidaria	parazoanthid	Parazoanthus sp2 white	37	1
Cnidaria	pennatulacean	pennatulacean	52	22
Cnidaria	pennatulacean	pennatulacean twisted		3
Cnidaria	pennatulacean	pennatulacean white	2	44
Cnidaria	pennatulid	Pennatula flava cf	1	4
Cnidaria	pennatulid	Pennatula inflata	I	19
Cnidaria	pennatulid	Pennatula perceyi cf	1	5
Cnidaria	pennatulid	Pennatula sp	18	4
Cnidaria	pennatulid	Pennatula sp4 cf		4
Cnidaria	periphyllid	periphyllid		I
Cnidaria	plexaurid	Anthomuricea sp	I	
Cnidaria	plexaurid	Eunicella sp		2
Cnidaria	plexaurid	Paracis miyajimai	I	T

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	plexaurid	Paramuricea sp	2	
Cnidaria	plexaurid	Pseudothesea sp		5
Cnidaria	plexaurid	Swiftia sp cf		2
Cnidaria	pocilloporid	Madracis kauaiensis	2	
Cnidaria	primnoid	Amphilaphis circumoperculum	69	
Cnidaria	primnoid	Callogorgia formosa	5	6
Cnidaria	primnoid	Callogorgia formosa cf		I
Cnidaria	primnoid	Callogorgia gilberti	29	2
Cnidaria	primnoid	Callogorgia sp	15	4
Cnidaria	primnoid	Calyptrophora alpha		T
Cnidaria	primnoid	Calyptrophora alpha cf	87	23
Cnidaria	primnoid	Calyptrophora sp	18	7
Cnidaria	primnoid	Calyptrophora sp lyrate	3	4
Cnidaria	primnoid	Calyptrophora sp2	2	6
Cnidaria	primnoid	Calyptrophora sp4		4
Cnidaria	primnoid	Calyptrophora spinosa	13	
Cnidaria	primnoid	Calyptrophora versluysi	5	
Cnidaria	primnoid	Calyptrophora wyvillei	17	T
Cnidaria	primnoid	Calyptrophora wyvillei cf	9	
Cnidaria	primnoid	Candidella gigantea	72	43
Cnidaria	primnoid	Candidella helminthopora	16	2
Cnidaria	primnoid	Candidella sp unbranched	I	
Cnidaria	primnoid	Fanellia euthyeia	I	22
Cnidaria	primnoid	Fanellia euthyeia cf	2	2
Cnidaria	primnoid	Narella dichotoma	97	82
Cnidaria	primnoid	Narella gigas	69	11
Cnidaria	primnoid	Narella macrocalyx	8	27
Cnidaria	primnoid	Narella sp	177	58
Cnidaria	primnoid	Narella sp cf	I	
Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
----------	----------------	----------------------------	-----------------	------------------------
Cnidaria	primnoid	primnoid	98	34
Cnidaria	primnoid	primnoid bushy	34	
Cnidaria	primnoid	primnoid lyrate	8	
Cnidaria	primnoid	primnoid planar	I	
Cnidaria	primnoid	Thouarella hilgendorfi	2	13
Cnidaria	protoptilid	Protoptilum sp	9	2
Cnidaria	protoptilid	Protoptilum sp cf		1
Cnidaria	rhopalonematid	Colobonema sp		I
Cnidaria	schizopathid	Bathypathes alternata	1	4
Cnidaria	schizopathid	Bathypathes branched	6	
Cnidaria	schizopathid	Bathypathes conferta	115	36
Cnidaria	schizopathid	Bathypathes patula	2	5
Cnidaria	schizopathid	Bathypathes sp	3	28
Cnidaria	schizopathid	Dendropathes bacotaylorae	2	
Cnidaria	schizopathid	Stauropathes sp	1	
Cnidaria	schizopathid	Stauropathes staurocrada	2	16
Cnidaria	schizopathid	Umbellapathes helioanthes	2	П
Cnidaria	scleractinian	scleractinian	58	36
Cnidaria	scleractinian	scleractinian orange		4
Cnidaria	scleractinian	scleractinian single polyp	24	15
Cnidaria	scyphozoan	scyphozoan	3	25
Cnidaria	scyphozoan	scyphozoan satellite		5
Cnidaria	solanderiid	Solanderia sp	4	1
Cnidaria	stoloniferan	stoloniferan	8	
Cnidaria	stylasterid	Distichopora anceps		18
Cnidaria	stylasterid	Distichopora asulcata		7
Cnidaria	stylasterid	Distichopora violacea	12	T
Cnidaria	stylasterid	Stylaster griggi		I
Cnidaria	stylasterid	stylasterid		I

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Cnidaria	tubulariid	tubulariid	4	14
Cnidaria	tubulariid	tubulariid sp2		3
Cnidaria	umbellulid	Umbellula sp	9	1
Cnidaria	virgulariid	Virgularia abies cf		2
Cnidaria	virgulariid	Virgularia sp	3	5
Cnidaria	zoanthinarian	zoanthinarian	12	3
Ctenophora	coeloplanid	Lyrocteis sp	38	41
Ctenophora	ctenophore	ctenophore	1	7
Annelida	bristleworm	bristleworm	1	1
Annelida	polychaete	polychaete		1
Annelida	scaleworm	scaleworm	I	
Annelida	serpulid	serpulid	I	
Annelida	tube worm	tubeworm	9	2
Annelida	worm	worm	I	1
Mollusca	bivalve	bivalve		16
Mollusca	cassidid	Phalium kurodai	I	1
Mollusca	cephalopod	cephalopod	I	1
Mollusca	cerithiid	Cerithium matukense	3	
Mollusca	cerithiid	Cerithium sp		1
Mollusca	cirroteuthid	Cirrothauma magna cf	8	
Mollusca	conid	conid w/pargurid		1
Mollusca	conid	Conus smirna		3
Mollusca	conid	Conus sp		1
Mollusca	cymatiid	Charonia sp	1	
Mollusca	cypraeid	Cypraea tessellata		1
Mollusca	decapod	decapod cf	1	
Mollusca	gastropod	gastropod	8	12
Mollusca	gastropod	gastropod with anemone		1
Mollusca	histioteuthid	Histioteuthis cerasina	1	

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Mollusca	joubiniteuthid	Joubiniteuthis portieri		2
Mollusca	mollusk	mollusk	7	
Mollusca	octopodid	Berrya hoylei	3	4
Mollusca	octopodid	Callistoctopus cf ornatus	2	
Mollusca	octopodid	octopodid	7	3
Mollusca	octopodid	Octopus sp	5	14
Mollusca	octopodid	Octopus sp I	7	
Mollusca	ommastrephid	Nototodarus hawaiiensis	6	7
Mollusca	opisthoteuthid	Grimpoteuthis sp	7	2
Mollusca	pectinid	pectinid		3
Mollusca	pinnid	Pinna muricata		I
Mollusca	pleurobranchid	Koonsia sp		I
Mollusca	pleurobranchid	Pleurobranchella nicobarica	2	7
Mollusca	pleurobranchid	pleurobranchid	8	3
Mollusca	pleurobranchid	Pleurobranchus mammalatus		I
Mollusca	polycerid	polycerid	21	
Mollusca	ranellid	Charonia tritonis		1
Mollusca	tonnid	Tonna dolium		I
Mollusca	tonnid	Tonna melanostoma		1
Mollusca	tonnid	Tonna sp	2	
Mollusca	tritoniid	Tritonia sp		2
Arthropoda Chelicerata	pycnogonid	pycnogonid		3
Arthropoda Crustacea	amphipod	amphipod	5	8
Arthropoda Crustacea	amphipod	amphipod cf		3
Arthropoda Crustacea	aristeid	aristeid		1
Arthropoda Crustacea	aristeid	Aristeus semidentatus		2
Arthropoda Crustacea	aristeid	Benthesicymus laciniatus	I	8
Arthropoda Crustacea	barnacle	barnacle	5	
Arthropoda Crustacea	barnacle	barnacle stalked		I

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Arthropoda Crustacea	barnacle	barnacle unstalked	I	
Arthropoda Crustacea	barnacle	barnacle unstalked large white	3	
Arthropoda Crustacea	calappid	Calappa pokipoki	I	
Arthropoda Crustacea	calappid	calappid		2
Arthropoda Crustacea	calappid	Mursia hawaiiensis		I
Arthropoda Crustacea	chirostylid	chirostylid	4	8
Arthropoda Crustacea	chirostylid	chirostylid cf		2
Arthropoda Crustacea	chirostylid	Eumunida balssi	2	2
Arthropoda Crustacea	chirostylid	Eumunida sp	2	2
Arthropoda Crustacea	chirostylid	Eumunida treguieri	4	26
Arthropoda Crustacea	chirostylid	Gastroptychus sp	I	
Arthropoda Crustacea	chirostylid	Gastroptychus sp one stripe		T
Arthropoda Crustacea	chirostylid	Pseudomunida fragilis	2	
Arthropoda Crustacea	cirripedia	cirripedia unidentified	I	
Arthropoda Crustacea	crab	crab	51	6
Arthropoda Crustacea	crab	crab unknown		I
Arthropoda Crustacea	crustacean	crustacean	2	4
Arthropoda Crustacea	decapod	decapod	15	П
Arthropoda Crustacea	diogenid	Dardanus sp		3
Arthropoda Crustacea	dynomenid	Dynomene devaneyi	4	2
Arthropoda Crustacea	galatheid	Babamunida n sp l	2	7
Arthropoda Crustacea	galatheid	galatheid	86	68
Arthropoda Crustacea	galatheid	galatheid banded	I	
Arthropoda Crustacea	galatheid	Munida normani	5	
Arthropoda Crustacea	galatheid	Munida plexaura	5	I
Arthropoda Crustacea	galatheid	Munida sp	7	I
Arthropoda Crustacea	galatheid	Munidopsis sp	3	3
Arthropoda Crustacea	galatheid	Paramunida hawaiiensis	3	8
Arthropoda Crustacea	galatheid	Paramunida hawaiiensis cf		1

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Arthropoda Crustacea	geryonid	geryonid	2	12
Arthropoda Crustacea	geryonid	Neopilumnoplax major	18	5
Arthropoda Crustacea	geryonid	Progeryon mus	2	
Arthropoda Crustacea	heterolepadid	Heteralepas sp cf	1	1
Arthropoda Crustacea	homolid	Homola dickensoni	T	T
Arthropoda Crustacea	homolid	Homola sp		2
Arthropoda Crustacea	homolid	homolid	6	2
Arthropoda Crustacea	homolid	Lamoha williamsi	I	
Arthropoda Crustacea	homolid	Paramola alcocki	11	2
Arthropoda Crustacea	homolid	Paromola japonica	9	1
Arthropoda Crustacea	homolid	Paromola sp	I	19
Arthropoda Crustacea	latreillid	Latreilla velida		1
Arthropoda Crustacea	latreillid	Latreilla velida		1
Arthropoda Crustacea	leucosiid	leucosiid	I	
Arthropoda Crustacea	leucosiid	leucosiid cf		1
Arthropoda Crustacea	leucosiid	Randallia distincta	7	3
Arthropoda Crustacea	lithodid	Lithodes longispinna		5
Arthropoda Crustacea	lithodid	Lithodes nintokuae	3	
Arthropoda Crustacea	lithodid	lithodid		2
Arthropoda Crustacea	lithodid	Neolithodes sp	3	4
Arthropoda Crustacea	majid	Cyrtomaia smithi	9	1
Arthropoda Crustacea	majid	Cyrtomaia sp	1	
Arthropoda Crustacea	majid	Sphenocarcinus carbunculus		3
Arthropoda Crustacea	mysid	mysid	2	
Arthropoda Crustacea	nematocarcinid	nematocarcinid		1
Arthropoda Crustacea	nematocarcinid	Nematocarcinus tenuirostris	13	2
Arthropoda Crustacea	odontodactylid	Odontodactylus hawaiiensis		2
Arthropoda Crustacea	pagurid	Ciliopagurus hawaiiensis	2	4
Arthropoda Crustacea	pagurid	pagurid	25	16

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Arthropoda Crustacea	pagurid	pagurid big claw		3
Arthropoda Crustacea	pagurid	pagurid in cone shell		1
Arthropoda Crustacea	pagurid	pagurid in natacid shell		1
Arthropoda Crustacea	pagurid	pagurid with anemone		2
Arthropoda Crustacea	pandalid	Heterocarpus ensifer	5	3
Arthropoda Crustacea	pandalid	Heterocarpus laevigatus	13	14
Arthropoda Crustacea	pandalid	Heterocarpus sp		2
Arthropoda Crustacea	pandalid	pandalid	5	1
Arthropoda Crustacea	pandalid	Plesionika alcocki	15	
Arthropoda Crustacea	pandalid	Plesionika edwardsii	1	1
Arthropoda Crustacea	pandalid	Plesionika martia		3
Arthropoda Crustacea	pandalid	Plesionika normani		2
Arthropoda Crustacea	pandalid	Plesionika pacifica	6	5
Arthropoda Crustacea	pandalid	Plesionika sp	12	7
Arthropoda Crustacea	pandalid	Plesionika sp flag	I	
Arthropoda Crustacea	pandalid	Plesionika sp l		3
Arthropoda Crustacea	pandalid	Plesionika sp2	I	5
Arthropoda Crustacea	pandalid	Plesionika sp3		2
Arthropoda Crustacea	pandalid	Plesionika sp4		1
Arthropoda Crustacea	pandalid	Plesionika sp5		1
Arthropoda Crustacea	parapagurid	parapagurid		1
Arthropoda Crustacea	parapagurid	Sympagurus birkenroadi		13
Arthropoda Crustacea	parapagurid	Sympagurus dofleini	17	11
Arthropoda Crustacea	parapagurid	Sympagurus sp	1	
Arthropoda Crustacea	parthenopid	parthenopid	1	
Arthropoda Crustacea	parthenopid	Tutankhamen pteromerus	3	
Arthropoda Crustacea	penaeid	Aristaeopsis edwardsiana	44	39
Arthropoda Crustacea	poecilasmatid	Megalasma sp cf		1
Arthropoda Crustacea	poecilasmatid	Octolasmis hawaiiense cf		

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Arthropoda Crustacea	polychelid	Homeryon asper	1	3
Arthropoda Crustacea	polychelid	polychelid	1	
Arthropoda Crustacea	protosquillid	Echinosquilla sp	2	2
Arthropoda Crustacea	raninid	raninid		2
Arthropoda Crustacea	scalpellid	Alcockianum cf alcockianum	1	
Arthropoda Crustacea	shrimp	shrimp	4	196
Arthropoda Crustacea	shrimp	shrimp red	4	4
Arthropoda Crustacea	shrimp	shrimp white	4	
Arthropoda Crustacea	shrimp	shrimp white dot		3
Arthropoda Crustacea	squillid	squillid	1	I
Arthropoda Crustacea	xanthid	xanthid	1	
Echiura	echiuroid	echiuroid		I
Bryozoa	bryozoan	bryozoan	1	
Echinodermata	antedonid	Antedon sp	1	
Echinodermata	antedonid	Antedon sp tan	1	
Echinodermata	antedonid	Antedon sp yellow	1	2
Echinodermata	antedonid	Antedon sp yellow cf		2
Echinodermata	aspidodiadematid	Aspidodiadema hawaiiensis	6	3
Echinodermata	aspidodiadematid	Aspidodiadema sp	2	6
Echinodermata	aspidodiadematid	Aspidodiadema sp cf		4
Echinodermata	asteriid	Sclerasterias euplecta	3	
Echinodermata	asteriid	Tarsastrocles verrilli	4	
Echinodermata	asterinid	Anseropoda insignis		4
Echinodermata	asteroid	asteroid	62	59
Echinodermata	asteroid	asteroid I arms	1	
Echinodermata	asteroid	asteroid 7 arms	I	
Echinodermata	asteroid	asteroid 9 arms white		1
Echinodermata	asteroid	asteroid orange	2	3
Echinodermata	asteroid	asteroid white	6	2

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Echinodermata	asteroid	asteroid white long arms	3	
Echinodermata	asteroschematid	Asteroschema caudatum	I	2
Echinodermata	asteroschematid	Asteroschema sp	17	7
Echinodermata	asteroschematid	Ophiocreas oedipus	1	
Echinodermata	asterostomatid	Phrissocystis multispina		7
Echinodermata	astropectinid	astropectinid		1
Echinodermata	astropectinid	Ctenophoraster hawaiiensis		4
Echinodermata	astropectinid	Dipsacaster nesiotes		1
Echinodermata	atelecrinid	Atelecrinus conifer	3	
Echinodermata	brisingid	Brisinga alberti	I	
Echinodermata	brisingid	Brisinga fragilis	I	2
Echinodermata	brisingid	Brisinga panopla	3	2
Echinodermata	brisingid	Brisinga sp	3	
Echinodermata	brisingid	brisingid	3	48
Echinodermata	brisingid	Hymenodiscus sp	3	
Echinodermata	brissid	Brissus laticarinatus		1
Echinodermata	charitometrid	charitometrid		1
Echinodermata	cidarid	Acanthocidaris hastigera	5	7
Echinodermata	cidarid	Acanthocidaris sp		13
Echinodermata	cidarid	Actinocidaris thomasii	3	21
Echinodermata	cidarid	cidarid	16	24
Echinodermata	cidarid	cidarid white	3	
Echinodermata	cidarid	Histocidaris variabilis	16	3
Echinodermata	cidarid	Stereocidaris hawaiiensis	117	112
Echinodermata	cidarid	Stylocidaris calacantha	4	9
Echinodermata	cidarid	Stylocidaris rufa	6	39
Echinodermata	cidarid	Stylociterinae cf	I	
Echinodermata	comatulid	comatulid	5	6
Echinodermata	comatulid	comatulid black	8	

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Echinodermata	comatulid	comatulid brown	3	15
Echinodermata	comatulid	comatulid orange		1
Echinodermata	comatulid	comatulid red	21	18
Echinodermata	comatulid	comatulid spotted		1
Echinodermata	comatulid	comatulid tan	4	2
Echinodermata	comatulid	comatulid white		4
Echinodermata	comatulid	comatulid yellow	1	2
Echinodermata	crinoid	crinoid	17	73
Echinodermata	crinoid	crinoid black	3	
Echinodermata	crinoid	crinoid yellow	4	1
Echinodermata	crinoid stalked	crinoid stalked		2
Echinodermata	crinoid stalked	crinoid stalked red	4	3
Echinodermata	crinoid stalked	crinoid stalked small white	I	
Echinodermata	crinoid stalked	crinoid stalked white	4	
Echinodermata	crinoid stalked	crinoid stalked yellow	I	2
Echinodermata	deimatid	deimatid	2	
Echinodermata	deimatid	Orphnurgus sp	2	1
Echinodermata	diadematid	Chaetodiadema pallidum		2
Echinodermata	diadematid	diadematid	I	6
Echinodermata	diadematid	diadematid cf		1
Echinodermata	diadematid	Leptodiadema purpureum cf	I	
Echinodermata	echinasterid	echinasterid		2
Echinodermata	echinasterid	Henricia pauperrima	6	7
Echinodermata	echinasterid	Henricia robusta	6	4
Echinodermata	echinasterid	Henricia sp	2	5
Echinodermata	echinid	echinid		1
Echinodermata	echinid	echinid cf		2
Echinodermata	echinoid	echinoid	14	36
Echinodermata	echinoid	echinoid black		3

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Echinodermata	echinoid	echinoid gray	1	
Echinodermata	echinothurid	Araeosoma sp	I	9
Echinodermata	echinothurid	echinothurid	2	34
Echinodermata	echinothurid	echinothurid gray	7	1
Echinodermata	echinothurid	echinothurid white	2	2
Echinodermata	echinothurid	echinothuroida	27	12
Echinodermata	echinothurid	Phormosoma bursarium	3	15
Echinodermata	echinothurid	Sperosoma obscurum	2	3
Echinodermata	elasipodid	Oneiophanta mutabilis	1	
Echinodermata	elphidiid cf	Amperima sp cf	1	
Echinodermata	goniasterid	Anthenoides epixanthus	7	18
Echinodermata	goniasterid	Astroceramus callimorphus		1
Echinodermata	goniasterid	Astroceramus sp		8
Echinodermata	goniasterid	Astroceramus sp I	3	2
Echinodermata	goniasterid	Calliaster pedicellaris	7	4
Echinodermata	goniasterid	Calliderma spectabilis	I	I
Echinodermata	goniasterid	Ceramaster bowersi	I	7
Echinodermata	goniasterid	Circeaster sp	I	I
Echinodermata	goniasterid	Evoplosoma forcipifera		1
Echinodermata	goniasterid	Gilbertaster anacanthus	I	I
Echinodermata	goniasterid	goniasterid	74	67
Echinodermata	goniasterid	goniasterid bat	I	
Echinodermata	goniasterid	Hippasteria imperialis	2	3
Echinodermata	goniasterid	Hippasteria imperialis cf		1
Echinodermata	goniasterid	Mediaster ornatus	8	47
Echinodermata	goniasterid	Mediaster ornatus cf		1
Echinodermata	goniasterid	Nereidaster bowersi cf		1
Echinodermata	goniasterid	Peltaster micropeltus		1
Echinodermata	goniasterid	Plinthaster ceramoidea	7	3

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Echinodermata	goniasterid	Pseudarchaster myobrachius	1	
Echinodermata	goniasterid	Sphaeriodiscus ammophilus	25	14
Echinodermata	gorgonocephalid	Astrospartus sp		6
Echinodermata	gorgonocephalid	gorgonocephalid	5	117
Echinodermata	holothuroid	holothuroid	6	41
Echinodermata	hyocrinid	Ptilocrinus sp		2
Echinodermata	labiasteriid	Coronaster eclipes	5	16
Echinodermata	labiasteriid	Coronaster sp white		1
Echinodermata	laetmogonid	Pannychia moseleyi	4	
Echinodermata	laganid	Laganum fudsiyama	2	7
Echinodermata	loveniid	Lovenia sp		1
Echinodermata	luidiid	Luidia magnifica	I	
Echinodermata	micropygid	Micropyga tuberculata	66	1
Echinodermata	micropygid	Micropyga tuberculata cf	2	4
Echinodermata	myxasterid	Asthenactis papyraceus	8	3
Echinodermata	myxasterid	myxasterid		2
Echinodermata	novodiniid	Novodinia pacifica	1	1
Echinodermata	ophiacanthid	ophiacanthid	2	1
Echinodermata	ophiacanthid	ophiacanthid banded		3
Echinodermata	ophiacanthid	ophiacanthid red		2
Echinodermata	ophiacanthid	ophiacanthid starred	1	
Echinodermata	ophidiasterid	ophidiasterid		1
Echinodermata	ophidiasterid	Tamaria scleroderma	4	6
Echinodermata	ophidiasterid	Tamaria sp		1
Echinodermata	ophidiasterid	Tamaria tenella		5
Echinodermata	ophidiasterid	Tamaria triseriata		2
Echinodermata	ophiothricid	Macrophiothrix lepidus	3	
Echinodermata	ophiothricid	Ophiomyxa fisheri	4	
Echinodermata	ophiurid	ophiuroid	91	11

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Echinodermata	ophiurid	ophiuroid white	5	
Echinodermata	ophiurid	ophiuroid yellow		I
Echinodermata	pedinid	Caenopedina hawaiiensis	6	3
Echinodermata	pedinid	Caenopedina pulchella	6	I
Echinodermata	pedinid	Caenopedina sp		3
Echinodermata	pedinid	pedinid		T
Echinodermata	pelagothuriid	Enypniastes eximia	4	I
Echinodermata	porphyrocrinid	porphyrocrinid	6	
Echinodermata	proisocrinid	Proisocrinus ruberrimus	8	2
Echinodermata	spatangid	spatangid		4
Echinodermata	spatangoid	spatangoid		2
Echinodermata	synallactid	Hansenothuria benti	I	2
Echinodermata	synallactid	Mesothuria cf meseres	I	
Echinodermata	synallactid	Paelopatides cf retifer	5	154
Echinodermata	synallactid	Synallactes sp		4
Echinodermata	synallactid	synallactid	I	4
Echinodermata	synallactid	synallactid cf	2	
Echinodermata	thalassometrid	thalassometrid black	2	
Echinodermata	thalassometrid	thalassometrid red		I
Echinodermata	thalassometrid	thalassometrid yellow	I	
Echinodermata	zenometrid	zenometrid striped		5
Echinodermata	zoroasterid	Zoroaster spinulosus		3
Chordata Tunicata	octacnemid	octacnemid		2
Chordata Tunicata	perophorid	Perophora sp		T
Chordata Tunicata	pyrosome	pyrosome	6	7
Chordata Tunicata	siphonophore	siphonophore		2
Chordata Tunicata	thaliacean	thaliacean	11	16
Chondrichthyes	carcharhinid	Carcharhinus amblyrhynchos	8	
Chondrichthyes	carcharhinid	Carcharhinus galapagensis	1	1

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Chondrichthyes	carcharhinid	Carcharhinus plumbeus	1	
Chondrichthyes	carcharhinid	Carcharhinus sp		3
Chondrichthyes	centrophorid	Centrophorus granulosus cf		1
Chondrichthyes	centrophorid	Centrophorus sp	2	1
Chondrichthyes	centrophorid	Centrophorus tesselatus	I	1
Chondrichthyes	echinorhinid	Echinorhinus cookei	85	2
Chondrichthyes	etmopterid	Centroscyllium nigrum	3	1
Chondrichthyes	etmopterid	etmopterid	5	3
Chondrichthyes	etmopterid	Etmopterus lucifer		1
Chondrichthyes	etmopterid	Etmopterus pusillus		I
Chondrichthyes	etmopterid	Etmopterus sp		3
Chondrichthyes	etmopterid	Etmopterus sp l		I
Chondrichthyes	hexanchid	Hexanchus griseus	1	1
Chondrichthyes	hexatrygonid	Hexatrygon bickelli		I
Chondrichthyes	odontaspid	Odontaspis ferox		7
Chondrichthyes	plesiobatid	Plesiobatis daviesi	8	14
Chondrichthyes	pseudotriakid	Pseudotriakis microdon	13	8
Chondrichthyes	scylliorhinid	Apristurus sp	3	2
Chondrichthyes	shark	shark	12	19
Chondrichthyes	sphyrnid	Sphyrna sp	2	
Chondrichthyes	squalid	squalid	5	4
Chondrichthyes	squalid	Squalus mitsukurii	19	87
Chondrichthyes	torpedinid	Torpedo tokionis		1
Chondrichthyes	chimaerid	Hydrolagus purpurescens	П	5
Osteichthyes	acropomatid	Synagrops argyreus		1
Osteichthyes	acropomatid	Synagrops sp	9	
Osteichthyes	alepocephalid	alepocephalid		1
Osteichthyes	ammodytiid	Ammodytoides pylei	3	19
Osteichthyes	ammodytiid	Ammodytoides sp		13

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	argentinid	Glossanodon struhsakeri	8	33
Osteichthyes	ariommatid	Ariomma brevimanum		2
Osteichthyes	ariommatid	Ariomma luridum		1
Osteichthyes	ateleopodid	ljimaia plicatellus	41	8
Osteichthyes	barbourisiid	Barbourisia rufa	2	
Osteichthyes	bathygadid	bathygadid	7	14
Osteichthyes	bathygadid	Bathygadus bowersi		4
Osteichthyes	bathygadid	Gadomus melanopterus	I	4
Osteichthyes	bembrid	Bembradium roseum	11	4
Osteichthyes	berycid	Beryx decadactylus	139	33
Osteichthyes	berycid	Beryx sp	3	12
Osteichthyes	berycid	Beryx splendens	7	3
Osteichthyes	bothid	bothid	9	2
Osteichthyes	bothid	Bothus thompsoni		1
Osteichthyes	bothid	Chascanopsetta crumenalis		3
Osteichthyes	bothid	Chascanopsetta prorigera	4	6
Osteichthyes	bothid	Parabothus coarctatus		5
Osteichthyes	bothid	Taeniopsetta radula		3
Osteichthyes	bramid	Taractichthys steindachneri	6	1
Osteichthyes	callanthiid	Grammatonotus laysanus	39	17
Osteichthyes	callanthiid	Grammatonotus macrophthalmus	I	1
Osteichthyes	callanthiid	Grammatonotus sp	12	32
Osteichthyes	callanthiid	Grammatonotus sp l	6	5
Osteichthyes	caproid	Antigonia eos	47	14
Osteichthyes	caproid	Antigonia sp	199	3
Osteichthyes	carangid	carangid		1
Osteichthyes	carangid	Caranx lugubris	13	
Osteichthyes	carangid	Decapterus sp	18	4
Osteichthyes	carangid	Decapterus tabl	21	3

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	carangid	Pseudocaranx dentex	1	89
Osteichthyes	carangid	Seriola dumerili	45	33
Osteichthyes	carangid	Seriola rivoliana		1
Osteichthyes	carangid	Seriola sp	13	4
Osteichthyes	carapid	carapid	1	5
Osteichthyes	carapid	carapid cf		I
Osteichthyes	carapid	Pyramodon ventralis	1	12
Osteichthyes	carapid	Snyderidia canina	1	4
Osteichthyes	centrolophid	Hyperoglyphe japonica		2
Osteichthyes	cepolid	Sphenanthias sp	35	
Osteichthyes	chaetodontid	chaetodontid	1	
Osteichthyes	chaetodontid	Heniochus diphreutes	I	
Osteichthyes	chaetodontid	Prognathodes basabei		1
Osteichthyes	chaetodontid	Roa excelsa	24	31
Osteichthyes	chaunacid	Chaunacops cf melanostomus	6	1
Osteichthyes	chaunacid	Chaunax sp	7	
Osteichthyes	chaunacid	Chaunax umbrinus	47	16
Osteichthyes	chlorophthalmid	chlorophthalmid	I	2
Osteichthyes	chlorophthalmid	Chlorophthalmus japonicus	4	1
Osteichthyes	chlorophthalmid	Chlorophthalmus proridens	3	18
Osteichthyes	chlorophthalmid	Chlorophthalmus proridens cf	2	
Osteichthyes	chlorophthalmid	Chlorophthalmus sp	12	
Osteichthyes	congrid	Bathycongrus guttulatus	3	3
Osteichthyes	congrid	Bathyuroconger vicinus		5
Osteichthyes	congrid	Conger oligoporus	4	2
Osteichthyes	congrid	congrid	6	7
Osteichthyes	congrid	congrid blunt nose		2
Osteichthyes	congrid	congrid white fins	7	8
Osteichthyes	congrid	congrid white-fins		T

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	congrid	Gnathophis nystromi	1	
Osteichthyes	congrid	Gnathophis sp	8	18
Osteichthyes	congrid	Uroconger lepturus	2	6
Osteichthyes	cynoglossid	Symphurus undatus	I	
Osteichthyes	eel	eel	46	27
Osteichthyes	eel	eel like	3	
Osteichthyes	eel	eel small white	I	
Osteichthyes	eel	eel small white fins		T
Osteichthyes	emmelichthyid	emmelichthyid	I	2
Osteichthyes	emmelichthyid	Erythrocles scintillans	2	7
Osteichthyes	epigonid	epigonid	3	5
Osteichthyes	epigonid	Epigonus atherinoides	18	2
Osteichthyes	epigonid	Epigonus devaneyi	5	15
Osteichthyes	epigonid	Epigonus fragilis	26	2
Osteichthyes	epigonid	Epigonus glossodontus	9	7
Osteichthyes	epigonid	Epigonus sp	33	54
Osteichthyes	fish	fish	147	297
Osteichthyes	fish	fish black	I	
Osteichthyes	fish	fish small	I	
Osteichthyes	flatfish	flatfish		T
Osteichthyes	gempylid	Epinnula magistralis	I	
Osteichthyes	gempylid	gempylid	7	19
Osteichthyes	gempylid	Nealotus tripes		3
Osteichthyes	gempylid	Rexea nakamurai	4	12
Osteichthyes	gempylid	Ruvettus pretiosus	6	11
Osteichthyes	gonostomatid	Araiophos gracilis		I
Osteichthyes	gonostomatid	gonostomatid		2
Osteichthyes	grammicolepid	Grammicolepis brachiusculus	77	53
Osteichthyes	halosaurid	Aldrovandia phalacra	1	2

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	halosaurid	Aldrovandia sp	I	48
Osteichthyes	halosaurid	halosaurid	3	18
Osteichthyes	holocentrid	holocentrid	3	9
Osteichthyes	holocentrid	Myripristis chryseres	2	
Osteichthyes	holocentrid	Ostichthys archiepiscopus		I
Osteichthyes	holocentrid	Pristilepis oligolepis	I	8
Osteichthyes	hoplichthyid	Hoplichthys citrinus		5
Osteichthyes	ipnopid	Bathypterois atricolor	I	8
Osteichthyes	ipnopid	Bathytyphlops marionae		7
Osteichthyes	labrid	Bodianus bathycapros	I	26
Osteichthyes	labrid	Bodianus cylindriatus	2	4
Osteichthyes	labrid	labrid	2	I
Osteichthyes	labrid	Polylepion russelli	4	
Osteichthyes	labrid	Suezichthys notatus	4	55
Osteichthyes	lophiid	Lophiodes bruchius	7	
Osteichthyes	lophiid	Lophiodes miacanthus		4
Osteichthyes	lophiid	Sladenia remiger	2	4
Osteichthyes	lutjanid	Etelis carbunculus	3	19
Osteichthyes	lutjanid	Etelis coruscans	76	65
Osteichthyes	lutjanid	lutjanid	12	27
Osteichthyes	lutjanid	Pristipomoides auricilla	3	3
Osteichthyes	lutjanid	Pristipomoides filamentosus	6	55
Osteichthyes	lutjanid	Pristipomoides sieboldii	1	2
Osteichthyes	lutjanid	Pristipomoides zonatus	34	48
Osteichthyes	lutjanid	Randallichthys filamentosus	2	2
Osteichthyes	macroramphosid	macroramphosid		4
Osteichthyes	macroramphosid	Macrorhamphosus scolopax		1
Osteichthyes	macrourid	Caelorinchus aratrum	2	12
Osteichthyes	macrourid	Caelorinchus doryssus		9

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	macrourid	Caelorinchus sp	5	8
Osteichthyes	macrourid	Caelorinchus sp4		1
Osteichthyes	macrourid	Caelorinchus sp5		1
Osteichthyes	macrourid	Caelorinchus spilonotus	13	12
Osteichthyes	macrourid	Caelorinchus tokiensis	6	11
Osteichthyes	macrourid	Cetonurus crassiceps	2	
Osteichthyes	macrourid	Coryphaenoides sp I	4	2
Osteichthyes	macrourid	Coryphaenoides sp2	12	14
Osteichthyes	macrourid	Haplomacrourus nudirostris		4
Osteichthyes	macrourid	Hymenocephalus antraeus		2
Osteichthyes	macrourid	Hymenocephalus sp		6
Osteichthyes	macrourid	Lucigadus sp	1	
Osteichthyes	macrourid	Lucigadus sp cf	I	3
Osteichthyes	macrourid	Lucigadus sp I		4
Osteichthyes	macrourid	macrourid	63	16
Osteichthyes	macrourid	macrourid cf	2	1
Osteichthyes	macrourid	macrourid or bathygadid	I	
Osteichthyes	macrourid	Malacocephalus boretzi	27	73
Osteichthyes	macrourid	Nezumia burragei		1
Osteichthyes	macrourid	Nezumia or Kumba sp		1
Osteichthyes	macrourid	Nezumia propinqua		3
Osteichthyes	macrourid	Nezumia sp	1	
Osteichthyes	macrourid	Nezumia sp l	3	1
Osteichthyes	macrourid	Sphagemacrurus gibber		4
Osteichthyes	macrourid	Ventrifossa sp		3
Osteichthyes	macrourid	Ventrifossa atherodon	1	6
Osteichthyes	macrourid	Ventrifossa ctenomelas	5	13
Osteichthyes	macrourid	Ventrifossa ctenomelas cf		1
Osteichthyes	macrourid	Ventrifossa sp cf	I	

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	morid	Gadella molokaiensis	3	4
Osteichthyes	morid	Gadella sp	3	15
Osteichthyes	morid	Gadella sp2		2
Osteichthyes	morid	Guttigadus sp	3	
Osteichthyes	morid	Laemonema rhodochir	14	75
Osteichthyes	morid	morid	17	45
Osteichthyes	morid	morid juvenile		T
Osteichthyes	morid	Physiculus grinnelli	I	3
Osteichthyes	morid	Physiculus nigripinnis	12	18
Osteichthyes	morid	Physiculus rhodopinnis	7	17
Osteichthyes	morid	Physiculus sp	2	1
Osteichthyes	morid	Physiculus sterops	2	13
Osteichthyes	muraenid	Gymnothorax berndti	5	6
Osteichthyes	muraenid	Gymnothorax nudivomer	3	
Osteichthyes	muraenid	Gymnothorax nuttingi	4	6
Osteichthyes	muraenid	Gymnothorax sp		25
Osteichthyes	muraenid	Gymnothorax steindachneri	2	2
Osteichthyes	muraenid	Gymnothorax ypsilon		I
Osteichthyes	myctophid	myctophid	9	6
Osteichthyes	myctophid	myctophid cf		9
Osteichthyes	neoscopelid	neoscopelid		1
Osteichthyes	neoscopelid	Neoscopelus macrolepidotus	14	2
Osteichthyes	neoscopelid	Neoscopelus macrolepidotus cf		1
Osteichthyes	nettastomatid	Nettastoma parviceps	11	18
Osteichthyes	nettastomatid	Nettastoma solitarium		8
Osteichthyes	nettastomatid	Nettastoma sp		8
Osteichthyes	nettastomatid	nettastomatid	2	6
Osteichthyes	nettastomatid	Nettenchelys gephyra	3	I
Osteichthyes	nettastomatid	Saurenchelys stylurus	2	9

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	notacanthid	notacanthid cf		
Osteichthyes	ogcocephalid	Malthopsis sp		3
Osteichthyes	ophichthid	Myrichthys magnificus	2	
Osteichthyes	ophichthid	myrophine	П	
Osteichthyes	ophichthid	ophichthid	52	9
Osteichthyes	ophichthid	Ophichthus kunaloa		
Osteichthyes	ophidiid	ophidiid	1	19
Osteichthyes	ophidiid	ophidiid new	1	
Osteichthyes	ophidiid	ophidiid white fins	I	2
Osteichthyes	ophidiid	Ophidion muraenolepis		1
Osteichthyes	ophidiid	Pycnocraspedum armatum	3	1
Osteichthyes	paralepidid	paralepidid		1
Osteichthyes	pentacerotid	Pentaceros japonicus		1
Osteichthyes	pentacerotid	Pseudopentaceros wheeleri	6	52
Osteichthyes	percophid	Bembrops filifera		9
Osteichthyes	percophid	Bembrops sp I	I	4
Osteichthyes	percophid	Chrionema chryseres	8	14
Osteichthyes	percophid	Chrionema sp	1	8
Osteichthyes	percophid	Chrionema squamiceps	8	4
Osteichthyes	percophid	percophid		2
Osteichthyes	peristediid	Satyrichthys engyceros	34	19
Osteichthyes	peristediid	Satyrichthys hians	2	13
Osteichthyes	peristediid	Satyrichthys sp	2	
Osteichthyes	pinguipedid	Parapercis roseoviridis	4	24
Osteichthyes	pleuronectid	Poecilopsetta hawaiiensis	3	2
Osteichthyes	polymixiid	Polymixia berndti	171	2
Osteichthyes	polymixiid	Polymixia japonica	342	19
Osteichthyes	polymixiid	Polymixia sp	18	21
Osteichthyes	pomacentrid	Chromis struhsakeri	5	25

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	priacanthid	Cookeolus japonicus	2	3
Osteichthyes	priacanthid	priacanthid	I	I
Osteichthyes	priacanthid	Priacanthus alalaua	5	4
Osteichthyes	priacanthid	Priacanthus sp		2
Osteichthyes	scorpaenid	Phenacoscorpius megalops		I
Osteichthyes	scorpaenid	Pontinus macrocephalus	24	71
Osteichthyes	scorpaenid	scorpaenid	151	29
Osteichthyes	scorpaenid	Scorpaenodes sp	I	
Osteichthyes	scorpaenid	Scorpaenopsis altirostris		2
Osteichthyes	scorpaenid	Setarches guentheri	58	35
Osteichthyes	serranid	Caprodon unicolor	7	21
Osteichthyes	serranid	Epinephelus quernus	7	317
Osteichthyes	serranid	Liopropoma aurora		4
Osteichthyes	serranid	Liopropoma maculatum		4
Osteichthyes	serranid	Luzonichthys earlei	7	14
Osteichthyes	serranid	Odontanthias elizabethae	28	
Osteichthyes	serranid	Odontanthias fuscipinnis	2	1
Osteichthyes	serranid	Plectranthias helenae	I	
Osteichthyes	serranid	Plectranthias kelloggi	36	123
Osteichthyes	serranid	Pseudanthias fucinus	24	19
Osteichthyes	serranid	Pseudanthias hawaiiensis	1	
Osteichthyes	sternoptychid	Argyripnus sp		I
Osteichthyes	swimmer	swimmer	3	
Osteichthyes	symphysanodontid	Symphysanodon maunaloae	29	3 5
Osteichthyes	symphysanodontid	Symphysanodon typus	9	42
Osteichthyes	synaphobranchid	Meadia abyssalis	29	12
Osteichthyes	synaphobranchid	synaphobranchid	7	14
Osteichthyes	synaphobranchid	synaphobranchid cf		I
Osteichthyes	synaphobranchid	Synaphobranchus affinis	44	4

Phylum	Group	'Species'	Cobalt- rich	Non Cobalt- rich
Osteichthyes	synaphobranchid	Synaphobranchus brevidorsalis	4	
Osteichthyes	synaphobranchid	Synaphobranchus sp	24	24
Osteichthyes	synodontid	synodontid	I	2
Osteichthyes	synodontid	Synodus kianus		7
Osteichthyes	tetraodontid	Canthigaster inframacula	I	I
Osteichthyes	tetraodontid	Sphoeroides pachygaster	2	
Osteichthyes	trachichthyid	Aulotrachichthys sp		2
Osteichthyes	trachichthyid	Hoplostethus crassispinus	6	I
Osteichthyes	trachichthyid	trachichthyid	I	I
Osteichthyes	trachichthyid	trachichthyid cf	4	T
Osteichthyes	triacanthodid	Hollardia goslinei	5	21
Osteichthyes	trichiurid	trichiurid	3	4
Osteichthyes	zeid	Cyttomimus stelgis	9	16
Osteichthyes	zeid	Stethopristes eos	3	T
Osteichthyes	zeid	zeid	2	2
Osteichthyes	zeid	Zenopsis nebulosus	12	24
Mammalia	phocid	Monachus schauinslandi		3

Multivariate analyses

Testing for community patterns

The results of the two-way ANOSIM test showed no significant difference in the invertebrate community composition between cobalt and non-cobalt sites (R = 0.042, p=0.315), but there was a significant difference in composition between locations (R = 0.465, p=0.001). The cluster diagram (Figure 5) shows a mixture of cobalt-rich and non cobalt-rich sites in all cluster groupings, with no discernible pattern in their distribution throughout the clusters. The MDS plot of these data (Figure 6) reflects the same mixed pattern, with no clear separation or grouping of sites by cobalt classification. However, when the same results are plotted by location (Figure 7), clustering becomes more evident, with individual sites tending to group closely (e.g. Maro Reef, East French Frigate Shoals) or separately from other locations (e.g. Cross Seamount, West St Rogatien).

Explaining community patterns

BIOENV results indicated that, when combined, the two variables "average depth of dive" and "number of species observed on the dive" provided the best explanation of the overall pattern of invertebrate community composition, with a correlation value of 0.525. However, the BIOENV results for single variables indicated that average depth of dive alone had a correlation of 0.522, which was much higher than any other single variable (Table 5). The results for the combined variables also showed that any other factor with average depth of dive gave a correlation value of 0.525, indicating that the inclusion of any other variable adds very little to the explanation of the overall pattern observed. Thus average depth of dive alone is considered the variable that best explains the observed pattern of invertebrate community composition.

Figure 5. Cluster dendrogram of the reduced presence/absence invertebrate data

Legend: Filled green triangles indicate cobalt-rich sites, open blue squares indicate non cobalt-rich sites.

Variable	Correlation value
Average Depth of Dive	0.522
Minimum Depth of Dive	0.473
Maximum Depth of Dive	0.416
PI - Kelley	0.371
PI - Other	0.251
Number of Species Observed	0.247
Summit Depth of Feature	0.221
Bottom Time of Dive	0.190
Feature Type – Seamount	0.157
Latitude	0.150
PI - Baco	0.148
Longitude	0.111
Feature Type – Bank	0.092
PI – Smith and Vetter	0.088
Feature Type – Emergent	0.045
Feature Type – Island Bank	-0.127
PI - Parrish	-0.179

Figure 6. MDS plot of the reduced presence/absence invertebrate data

Legend: Filled green triangles indicate cobalt-rich sites, open blue squares indicate non cobalt-rich sites.

Figure 7. MDS plot of the reduced presence/absence invertebrate data*

*Symbols represent location (see legend).

Figure 8 provides the MDS plot with a bubble overlay for the average depth of each dive. This figure shows that the pattern of invertebrate community composition at sites generally reflects a gradient of average depth. Shallower dives (primarily within an average depth range of 227-354m) occur on the right side of the plot, and site depth generally increases moving left along the x-axis, with a second cluster of dive sites primarily within average depths of 356-615 m in the lower centre of the plot, and a third more dispersed cluster to the left side of the plot that primarily includes dives within an average depth range of 745-1799 m.

Figure 8. MDS plot of the reduced presence/absence invertebrate data overlaid with values for average depth of dive and bubbles that increase in size with increasing depth

The apparent structuring of invertebrate communities with average depth of dive is even clearer in the cluster diagram of locations with average depth of dive (Figure 9). The three depth zones (from here referred to as shallow, intermediate and deep) derived from the MDS plot separate dives at the same location, generally clustering with their respective depth group. Within each depth group many sites show the highest similarity with other dives from the same location, with the general pattern being that location is nested within depth zone. Five dives are outliers to this pattern: two intermediate-depth dives from Maro Reef and one intermediate dive from Cross Seamount cluster with the shallow depth group with highest similarity to dives from Brooks Banks; and one intermediate depth dive from Nihoa falls into the shallow cluster most closely with a dive from Raita Bank.

Figure 9. Cluster dendrogram of the reduced presence/absence invertebrate data by depth zone

The two-way crossed analysis of species similarity (SIMPER) using location and average depth of dive (divided into the three depth zones outlined above) indicated that a large number of taxa contributed a small amount to the overall similarity of the invertebrate community found at sites within each depth zone. This may in part be an artefact of using data without any consideration of relative abundance (i.e. presence/absence data) (Clarke and Gorley, 2006). The shallow depth zone had only one species that met the 'characterizing' criterion; that was the antipatharian *Cirrhipathes/Stichopathes*, which contributed about 16 % of the community similarity value of 29.2% (Table 6). The community of the intermediate depth zone had two characterizing species, an unspecified gorgonian and *Gerardia* sp. (a zoanthid), which together contributed about 15% of the similarity value of 39.48% for this depth zone. The invertebrate community of the deep depth zone, with a similarity value of 32.68%, had no species which met the characterizing species criterion.

Legend: Green triangles indicate depths of 227-354 m, blue squares 357-615 m, and inverted blue triangles 745-1799 m. Locations are given along the x-axis.

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%
Shallow (Av. Sim=29.20)				
Cirrhipathes/Stichopathes	0.86	4.63	1.55	15.87
pagurid	0.64	3.56	1.18	12.18
Micropyga tuberculata	0.59	2.43	0.82	8.32
Stylocidaris rufa	0.41	1.93	0.62	6.62
pennatulacean	0.5	1.54	0.58	5.28
crab	0.5	1.29	0.48	4.42
Lyrocteis sp	0.5	1.15	0.46	3.95
Siphonogorgia collaris	0.36	1.02	0.47	3.5 I
shrimp	0.5	0.95	0.43	3.25
asteroid	0.41	0.93	0.4	3.19
Intermediate (Av. Sim=39.48)				
gorgonian	0.97	3.32	1.79	8.4
Gerardia sp	0.82	2.57	1.43	6.5 I
Corallium secundum	0.59	1.66	0.92	4.2
Aphanipathes sp l	0.38	1.29	0.99	3.28
shrimp	0.68	1.28	0.8	3.24
anemone	0.62	1.18	0.68	2.99
asteroid	0.53	1.1	0.7	2.79
Narella gigas	0.35	1.07	0.85	2.71
Paromola sp	0.53	1.06	0.84	2.69
hexactinellid	0.59	1.03	0.74	2.61
Deep (Av. Sim=32.68)				
gorgonian	0.72	2.34	0.68	7.17
ophiuroid	0.56	2.17	0.65	6.65
hexactinellid	0.64	1.95	0.7	5.95
pennatulacean	0.6	1.41	0.78	4.3
shrimp	0.56	1.22	0.68	3.73
anemone	0.56	1.1	0.61	3.36
lridogorgia bella	0.48	0.85	0.5	2.61
Metallogorgia melanotrichos	0.56	0.78	0.49	2.37
Paelopatides cf retifer	0.32	0.76	0.47	2.31
Lepidisis sp cf	0.48	0.66	0.64	2.01

Table 6. Species contributing the most to similarity within a given depth zone

Legend: Av. Abund=average abundance - for presence/absence data this equates to frequency of occurrence, Av.Sim=similarity. Bold Sim/SD=met 'Characterizing' criterion.

The top ten species that contributed the most to the dissimilarity observed between the invertebrate communities of each depth zone, and the 'discriminating' species are listed in Table 7. The largest dissimilarity between communities from different depths was for the shallow versus deep depth zones (84.5%). The species that contributed the most to the dissimilarity between these depth zones were a mix of major taxa, including the cniderians *Corallium regale*, *Gerardia* sp., *Calibelemnon symmetricum*, and *Paragorgia* sp I, and a ribbon-like chonelasmatinid sponge. The average dissimilarity between communities at dive sites in the intermediate and deep depth zones was 78.57%. The species that contributed the most to the dissimilarity between these depth zones were the gold coral *Gerardia* sp. and a primnoid coral, but neither met the discriminating criterion. The observed dissimilarity between the shallow and intermediate depth zones (77.94%) was most clearly represented by differences in the occurrence of six discriminating species (all cniderians except for two Paramola crabs).

Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD
Shallow-Intermediate (Av. Diss = 77.94)				
Corallium regale	0	0.38	1.41	1.7
Gerardia sp	0.09	0.82	1.32	1.45
Cirrhipathes/Stichopathes	0.86	0.35	1.29	1.27
Calibelemnon symmetricum	0	0.44	1.2	1.42
Paragorgia sp l	0	0.24	1.2	1.42
pennatulacean	0.5	0.47	1.13	1.19
Lyrocteis sp	0.5	0.12	1.1	1.04
Callogorgia gilberti	0.09	0.29	1.09	1.22
chonelasmatinae ribbon cf	0.05	0.24	1.09	1.38
Corallium sp	0.09	0.59	1.08	1
Shallow-Deep (Av. Diss = 84.50)				
hexactinellid	0.18	0.64	3.11	6
Lyrocteis sp	0.5	0	3.11	6
Paromola japonica	0.09	0	3.11	6
Paromola sp	0.36	0	3.11	6
pennatulacean	0.5	0.6	3.11	6
primnoid	0.18	0.32	3.11	6
hexactinellid stalked	0	0.28	2.17	1.24
Paelopatides cf retifer	0	0.32	2.17	1.24
Caulophacus sp	0	0.32	1.85	1.29
crinoid	0.32	0.4	1.85	1.29
Intermediate-Deep (Av. Diss = 78.57)				
Gerardia sp	0.82	0.04	1.76	0.92
primnoid	0.41	0.32	1.7	0.97
Corallium secundum	0.59	0.04	1.51	0.88
hexactinellid	0.59	0.64	1.48	0.82
ophiuroid	0.44	0.56	1.42	0.84
asteroid	0.53	0.44	1.39	0.79
Metallogorgia melanotrichos	0.24	0.56	1.3	0.76
pennatulacean	0.47	0.6	1.24	0.74
goniasterid	0.56	0.4	1.24	0.8
Iridogorgia bella	0.03	0.48	1.18	0.81

Table 7. Species that had consistently the largest contribution to distinguishing depth zones

Legend: Av. Abund=average abundance - for presence/absence data this equates to frequency of occurrence. Bold = taxa which met the 'discriminating criterion'

The results of the location component of the findings are not presented here because the SIMPER analysis was primarily conducted in order to reveal which species were responsible for the differences in community composition with respect to average depth zone. That is because depth was the environmental variable indicated by the BIOENV analysis as having the greatest correlation with the overall pattern of community composition, whilst accounting for the effect of location (hence the crossed analysis with the factor location).

Specimen photographs

Frame grabs of specimen images have been taken from the video, and then standardized for size and resolution and labelled.

Images are available for most of the 'species' identified in this study. However, displaying such a large number is problematic in a report. A web server which hosts all of the HURL specimen images is accessible (ftp://ftp.soest.hawaii.edu/ ckelley/outgoing/HURLAnimalGuide/). For the purposes of this report examples are given of selected specimen images which include representative taxa and main species for the major taxonomic groups:

Porifera (Figure 10)

Cnidaria (Figure 11)

Mollusca (Figure 12)

Crustacea (Figure 13)

Echinodermata (Figure 14)

Chondrichthyes (Figure 15)

Osteichthyes (Figure 16)

Above each image is the taxonomic name, and dive number. Depth is also indicated through a colour-coded square:

Depth Range Key

Note: this represents the depth at which the animal in the photograph was found, not the depth range for all of HURL's records for that species.

Figure 11. Representative images of Cnidaria 'species' (anemones, soft corals, sea pens)

Figure 11 (cont). Representative images of Cnidaria 'species' (black and gorgonian corals)

Figure 11 (cont). Representative images of Cnidaria 'species' (black and gorgonian corals)

Figure 11 (cont). Representative images of Cnidaria 'species' (stony corals)

Figure 13. Representative images of Crustacea 'species' (hermit crabs, squat lobsters, shrimps, crabs)

Figure 14. Representative images of Echinoderm 'species' (sea stars, brittle stars, urchins, sea cucumbers)

Figure 15. Representative images of Chondrichthyes 'species' (sharks, chimaeras, and eels)

Figure 16. Representative images of Osteichthyes 'species' (bony fish)

Figure 16 (cont). Representative images of Osteichthyes 'species' (bony fish)

CHAPTER FOUR	Discussion

4. Discussion

The study successfully achieved all its objectives. The project developed a detailed set of faunal records from dives carried out by HURL submersibles and ROVs from numerous sites in the Hawaiian Archipelago, which provided a comprehensive data set for analysis of the biodiversity of cobalt-rich crust seamounts. We stress again that the definition of "cobalt-rich crust" is based on whether the seamounts are in a region of likely commercial potential, and hence are indirectly "cobalt-rich". It does not mean that all cobalt-rich locations have high cobalt crust concentrations, or that non cobalt-rich locations could not have high cobalt levels. Results suggest there are no strong differences in the community composition of benthic invertebrates between cobalt-rich and non cobalt-rich crust sites. Depth, and to a lesser extent, locality, appear to be the main factors determining faunal distribution patterns. Below we discuss various aspects of the data or interpretation of results that highlight gaps in our current knowledge, and future research directed towards a workshop planned for 2011 that will review these findings and discuss their input to the formulation of environmental guidelines for future mining operations.

The dataset

The Hawaiian Archipelago falls on the periphery of the cobalt-rich region of seamounts of the CNP. The HURL video log database from Pisces submersible dives throughout the Archipelago and nearby seamounts represents one of the only datasets available to characterize the fauna of cobalt-rich seamounts. Although the dataset had to be reduced for the more detailed multivariate analyses carried out for this report, the data available for the final analyses still exceed those used for most other community analyses of seamounts and associated geomorphological features worldwide. The HURL database, therefore, represents a valuable resource for seamount analyses on a wider geographical scale than just the Hawaiian Islands region, as the data will be comparable to those from similar biodiversity studies being undertaken in the Southwest Pacific and North Atlantic Oceans.

Re-examining the data from the dives was a time consuming exercise as it entailed a great deal of additional work. However, this was necessary as recording practices had changed over time, and the taxonomic naming of species had also varied. As photographic records become an increasingly common and important part of scientific research, efforts worldwide have increased to utilize as much information in images as possible. CenSeam has sponsored two workshops, the most recent jointly with the Monterey Bay Aquarium Research Institute in May 2009, focused on improving identification of fauna and data analysis from video and still photographs taken of the seafloor. HURL researchers were present, and revisions were made to the database as a result of that workshop. The database is constantly being updated as species identifications are revised.

The database contained more data fields than could be used in the analyses. We were limited in our ability to use abundance information, because the records were combined from multiple cameras, and contained multiple records of the same animal if the vehicle was stationary for periods of time. Substrate information was also recorded for many dives, but was not used because it was incomplete for a number of dives examined early in the research project before substrate was routinely included in the re-examination protocol. Both these data sources are potentially important for evaluating the significance of the presenceabsence results, and we hope to be able to carry out further analyses in the future which include these variables.

Sampling level

The species accumulation curve shown for Cross Seamount clearly demonstrates that the level of sampling at all locations was insufficient to describe the full bioversity of the invertebrate megafauna (let alone the smaller macrofauna and infauna). Hence, rare species may not have been detected. Although efforts were made to standardize sampling between locations, the number of dives per location was still uneven, and this could influence results as more species were recorded on sites with more dives. The list of species from cobalt-rich and non cobalt-rich sites showed that a large number were only recorded at one or the other, and some species were rare and only found at very few sites even within a habitat type. This is partly due to sampling intensity, but may also reflect species which do in fact have a restricted distribution. More effort is needed to evaluate the likely distribution of these rare species.

Recent NOAA surveys in 2003 and 2004 involved submersible dives on a number of locations included in the present study: East Laysan, Pioneer, East Necker, Raita, Northwest Kure, West Lisianski Bank, Cross Seamount and Nero seamount. These dives found many species new to science, including 11 new species of octocorals, two new genera and several new species of antipatharians, three new stylasterid species, one new zoanthid species, and several new records of Scleractinia. Hence, although an extensive species list exists for the Hawaiian Archipelago, the high rate of discovery of new species and new records implies that the Archipelago is undersampled for deep-sea corals. Other invertebrate taxa associated with the corals and deep-sea sponges that are also abundant within these same habitats are poorly known taxonomically.

Drivers of faunal composition

Our analyses indicated that cobalt-rich sites do not appear to have a different invertebrate community composition from non-cobalt rich sites in the Hawaiian Archipelago. Neither do there appear to be differences in community composition that are related to the geomorphological classification (e.g. seamount, island, bank or atoll) of the features. The study, therefore, appears to produce conclusions consistent with a growing set of results indicating that seamount communities in many cases share species from a wider regional pool, rather than having strongly isolated and endemic faunas (e.g. O'Hara, 2007; Clark et al, 2010).

The invertebrate communities within the study area is structured both by location and depth. There was a statistically significant difference in the community composition among locations, although the difference was not particularly pronounced. It appears from the results of the analyses that depth has the strongest correlation with community composition, with three depth zones identified as having different community types: a shallow depth zone between 227 and 354m; an intermediate depth zone between 356 and 615m; and a deeper zone between 745 and 1,799 m. These depth zones match those identified by qualitative observations of deep-sea coral communities (from submersible dives which were a part of the data set (Parrish and Baco 2007; Baco, 2007). That invertebrate communities would be structured by depth is not surprising given that changes in community composition with depth have frequently been noted for communities at the depths sampled (see review by Carney, 2005).

Location appears to be secondary to depth as a factor. However, it is still likely to have considerable influence on community composition in the Hawaiian Archipelago, as illustrated by the tendency for dives from the same location to cluster together within a depth zone. There were also locations like Maro Reef (non cobalt-rich), where dives clustered together (i.e. have similar community composition), independent of depth zone.

As already mentioned, substrate was not included in the analysis. Substrate type is known to be an important factor in determining the composition of benthic fauna (e.g. Gage and Tyler, 1991), and it seems likely that different sediment types could be important in the Hawaiian Archipelago. Cobalt crusts may provide a much harder substrate for attaching organisms than, for example, carbonate or soft sediments, and could also stabilize and prevent erosion of carbonate areas on the flanks of islands and seamounts (authors' personal observations). What is unknown is whether hard, cobalt-rich crust is different from hard, non cobalt-rich crust. The non cobalt-rich crusts to the northwest also started their geological 'lives' in the cobalt-rich zone, slowly moving with the spreading of the Pacific Plate. More needs to be known about the physical composition of the crust surfaces on the features.

The similarity of invertebrate communities on seamounts and rises in a chain like the Hawaiian Archipelago will depend to a large extent on the dispersal capabilities of fauna (e.g. Parker and Tunnicliffe, 1994). Many shallow-water invertebrate species are thought to have limited dispersal capabilities, on average less than 100 km (Kinlan and Gaines, 2003), but little is known about the genetic connectivity of seamount invertebrates (Clark et al., 2010). Separation of communities by geographic distance (particularly trends along the Hawaiian Archipelago) were not examined in this study, but are suggested for future analysis.

The finding that oceanic islands, banks and seamounts in this study have similar communities has also been the result of comparisons of deep-water corals on oceanic islands and seamounts in the Atlantic (Hall-Spencer et al., 2007). Genetic studies have also indicated that chyrostylid crabs on the slope of the island of New Caledonia are well mixed genetically with those on nearby low-relief 'seamount' features (Samadi et al., 2006). Additionally, ophiuroids

collected from oceanic islands were found to cluster with ophiuroids from their nearest seamounts (O'Hara, 2007). Although each of these studies focuses on a particular taxon, the results agree well with those from the much larger and diverse dataset analysed here; that the geomorphological definition of a seamount as non-emergent features (e.g. Pitcher, T.J. and T. Morato et al., 2007) is not necessarily a biologically meaningful unit. Seamount-like features rising from the seafloor, regardless of the depth (and possibly emergence) of the summit can be considered in the same category as seamounts when considering biological research questions and management issues.

Management implications

The results of our analyses indicate that whether or not a seamount has a cobaltrich crust may not be a factor structuring seamount communities, at least among the features of the Hawaiian Archipelago. Instead, the main driver of invertebrate community composition appears to be depth (or other environmental variables that co-correlate with depth), with at least three depth 'zones' between 200 m and 2000 m which is the range where cobalt-rich crusts are found. Variability between locations is also likely to be important. A key issue for management, then, is how widespread any prospective mining operation is likely to be, and whether this would cover the geographical range of features which have similar invertebrate fauna, thus potentially placing benthic communities at risk.

Grigg et al (1987) recorded low biodiversity and abundance of megafauna on Cross Seamount, which is regarded as a cobalt-rich crust feature. They defined "sparse" and "barren" zones down the flanks of the seamount where the thickest crusts occurred, and noted that isolation from the main island chain, current flow directions, and the small relative size of the seamount could all be factors. limiting the recruitment of species, and contributing to these patterns. They went on to suggest that this meant the environmental impacts on the benthic megafauna produced by manganese crust mining operations would be minimal. However, it is clear from the exploration of Cross Seamount in recent years, and the results of this study, that a lot is still unknown about the composition. distribution and abundance of seamount fauna. Caution is therefore needed before reaching the conclusion that low diversity and low abundance equate to low risk. An important limitation is that photographic images may not give useful data on small invertebrates, below a size of 2-3 cm. It is possible that below this size, diversity is high, and may not show the same patterns we have found for macrofauna

The present study has greatly improved our knowledge of patterns of faunal composition and distribution on cobalt-rich crust seamounts. However, further work is necessary to build on the findings presented here to better describe the more detailed and comprehensive community composition on cobalt-rich crusts, to confirm the main factors driving the structure and function of the communities, and how they may be affected by any mineral exploration activity. In the section below we summarize some of the key items for future research, and in particular issues that can be tackled at the workshop planned for 2011.

Future work

The workshop planned for 2011 would firstly review the results of the present study, and then focus on progressing further analyses to improve our understanding of cobalt-rich crust biodiversity, before advancing recommendations for environmental guidelines.

I. Database

The HURL data used for this study have been extensively checked and groomed. However, there are still issues with the taxonomic identity and verification of some species. HURL is continuing to work with taxonomists to ensure the data are as complete and consistent as possible. Substrate information can be improved with further re-examination of some of the earlier Pisces 5 dives, so that the reduced dataset used for the multivariate analyses would have complete substrate information. However, this could be time consuming and may require additional funding.

2. Enhanced cobalt-rich versus non cobalt-rich analyses

The existing data can provide a basis for more detailed analysis of cobalt-rich versus non cobalt-rich crust communities. Substrate could be incorporated into multivariate analyses, as discussed above. In particular, efforts can be made to convert the species' presence-absence records into a measure of relative abundance. Abundance is important if crustal composition affects biomass as well as, or rather than, diversity. It is possible that the species compositions on cobalt-rich and non cobalt-rich crusts are similar, but faunal densities might be very different. Converting the data to provide abundance information is not an easy task, but CenSeam can utilize the skills of members of its Data Analysis Working Group, who are very experienced in dealing with this kind of data. It may also be possible to apply predictive techniques to estimate relative species composition and diversity (e.g. habitat suitability, niche factor; maximum species number, techniques). CenSeam has a working relationship with members of the Census of Marine Life programme, FMAP, who undertake this type of analysis (e.g. Tittensor et al, 2009).

3. Regional context analyses

The faunal lists (species locality records) presented here need to be compared with the growing datasets on biodiversity of seamounts in the Pacific Ocean generally. Seamounts Online (http://pacific.sdsc.edu/seamounts/) has records from biological surveys undertaken in the 1960s and 1970s from a number of seamounts in the CNP region. These include Allison, Horizon, Agassiz, Darwin, Hamilton and Hess seamounts and guyots (Wilson et al, 1985). Although sampling was not extensive, faunal lists are available for a number of groups. The taxonomic identification of the species lists needs to be checked and updated before any comparisons can be made. CenSeam has also compiled several detailed datasets of fauna from seamounts in the southwest Pacific Ocean. Before the workshop, efforts were made to access any available data, in particular from SeamountsOnline, in order to improve knowledge of the wider regional fauna

and provide an improved geographical context to evaluate how representative or unique the cobalt-rich communities are. This wider data set may also enable a determination of whether the fauna of the larger guyots (potentially of greater commercial interest than smaller volcanic peaks) differs from smaller seamounts.

A compilation of global octocoral distribution datasets is currently approaching completion by researchers at the Zoological Society of London. CenSeam members have been very active in this, and if such data are made available, this could give detailed regional information to compare with the HURL records from the Hawaiian Archipelago used in the present study.

4. Proximity comparison

The current research indicates that there is considerable variation in community composition between locations. However, an analysis was not possible in the time available to investigate the relationship of distance between seamounts and community structure. More detailed examination of between-location data may reveal discontinuities in distributions that are not apparent in the grouped cobaltrich and non cobalt-rich comparisons. This could help with the interpretation of the spatial scales at which biological changes may occur. This is important for understanding the geographical scale at which management of any mining activity would be required.

5. Chemical influences

The mineral composition of the cobalt-rich ferromanganese crusts is well known (e.g. Hein, 2002). However, very little is known about the influence of crust composition on the settlement or survival of benthic invertebrates. A literature search revealed no published research comprehensively addressing this subject. However, chemical toxicity may be important and we believe warrants further attention, as additional considerations for management of mining are the potential effects of enhanced sedimentation and the release of metals bound up in the crusts from any mining operations (Koslow, 2007).

6. Recommendations for key tasks at 2011 workshop

- Update HURL data records, complete substrate re-examination (pre-workshop).
- Compile other Pacific regional datasets (e.g. Seamounts Online, CenSeam) (pre-workshop).
- Undertake review of the results of the present study.
- Run new multivariate analyses with substrate information included.
- Re-analyse data based on abundance information.
- Evaluate results from the Hawaiian Archipelago sites against data from the wider Pacific Ocean region.
- Provide recommendations based on the workshop findings to the ISA for formulation of environmental guidelines.

Acknowledgments

The authors are grateful to Edith Chave and Jane Culp (both HURL) for their extensive help with dive video logging, creation of the photo gallery and data corrections. We also acknowledge the following taxonomists: Rich Mooi (echinoids), Gary Williams (pennatulaceans), Tomio Iwamoto (macrourids), John McCosker (ophichthids), Robert Van Syoc (barnacles), Dan Cohen (ophidiids), Janet Voight (cephalopods), Henry Reiswig (sponges), Robert Moffitt (crabs and shelled gastropods), Steven Cairns (scleractinians and primnoids), Les Watling (isidids), Cory Pittman (seaslugs), Dave Pawson (holothurians), Andrey Gebruk (holothurians) Daphne Fautin (anemones and corallimorpharians), Dennis Opresko (antipatharians), Chris Mah (asteroids), Allen Collins (sponges), and Charles Messing (crinoids). Thanks to Don Robertson and Mireille Consalvey (both NIWA) for helpful comments on the manuscript.

This project was funded by the International Seabed Authority. The authors extend their thanks to Nii Odunton and Adam Cook for their support of the study.

CHAPTER FIVE	References

5. References

Baco, A.R. (2007). Exploration for deep-sea corals on North Pacific seamounts and islands. *Oceanography* 20(4): pp. 58-67.

Carney R.S. (2005). Zonation of deep biota on continental margins. *Oceanography* and *Marine Biology*, *Annual Review* 43: pp. 211–78.

Clark, M.R. (2009). Seamounts: Biology, pp. 818–821. In: *Encyclopaedia of Islands* University of California Press. 1025p.

Clark, M.R. and J.A. Koslow (2007). 'Impacts of fisheries on seamounts.' Chapter 19. p. 413–441. In: Pitcher, T.J. and T. Morato et al. (eds). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series 12. Blackwell Publishing, Oxford. 527 pp.

Clark, M.R., A.A. Rowden and K. Stocks (2007b). 'The proposed Census of Marine Life Seamounts Project: towards a global baseline and synthesis of seamount community data –its applicability in minimizing impacts from crusts mining. Polymetallic sulphides and cobalt-rich ferromanganese crusts deposits: establishment of environmental baselines and an associated monitoring programme during exploration.' Chapter 13. In: Proceedings of the International Seabed Authority's Workshop, September 2004. pp. 295–308 (http://www.isa.org. jm/en/documents/publications).

Clark, M.R. and A.A. Rowden (2009). Effect of deepwater trawling on the macroinvertebrate assemblages of seamounts on the Chatham Rise, New Zealand. *Deep Sea Research* I 56: pp. 1540–1554

Clark, M.R. and V.I. Vinnichenko, et al., (2007a). 'Large scale distant water trawl fisheries on seamounts.' Chapter 17, pp. 361–399. In: Pitcher, T.J. and T. Morato et al. (eds), op cit.

Clark, M.R. and A.A Rowden, et al., (2010), The ecology of seamounts: structure, function, and human impacts. *Annual Review of Marine Science* 2: 253-278.

Clarke, K.R. and R.N. Gorley (2006). PRIMER v 6: User Manual Tutorial. Primer-E Ltd, Plymouth, 190 pp.

Clarke, K.R. and R.M. Warwick (2001) *Change in marine communities:an approach to statistical analysis and interpretation*, 2nd edn. Natural Environment Research Council and Plymouth Marine Laboratory, Plymouth, UK, 172 pp.

Da Silva, H.M. and M.R. Pinho (2007). 'Small-scale fishing on seamounts.' Chapter 16, pp. 335–360. In: Pitcher, T.J. and T. Morato et al. (eds).(2007). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series 12. Blackwell Publishing, Oxford. 527 pp.

Gage, J.D. and P.A. Tyler (1991). *Deep-Sea Biology*. Cambridge University Press, Cambridge, 504 pp.

Grigg, R.W., A. Malahoff, E.H. Chave and J. Landahl (1987). 'Seamount benthic ecology and potential environmental impact from managese crust mining in Hawaii.' In Keating, B.H., P. Fryer, R. Batiza and G.W. Boehlert (eds). In: *Seamounts, islands, and atolls*. Geophysical Monograph 43: pp. 379–390.

Hall-Spencer, J.M., A. Rogers, J. Davies and A. Foggo (2007). 'Historical deep-sea coral distribution on seamount, oceanic island and continental shelf-slope habitats in the NE Atlantic.' In: *Conservation and Adaptive Management of Seamount and Deep-Sea Coral Ecosystems*, R.Y George and S.D Cairns (eds), pp. 324. Miami: Rosenstiel School of Marine and Atmospheric Science.

Hein, J.R. (2002). Cobalt-rich ferromanganese crusts: global distribution, composition, origin and research activities. ISA Technical Study No 2: 36–89.

Hein, J.R. (in press). Exploration and mine site model applied to seamount leaseblock selection for cobalt-rich crusts. In: Proceedings of the International Seabed Authority's Workshop, May 2006.

Herzig, P.M. and S. Petersen (2002). *Polymetalic massive sulphide deposits at the modern seafloor and their resource potential*. ISA Technical Study No 2:7–35.

Herzig, P. (2007). 'Introduction to hydrothermal vents and associated polymetallic sulphides deposits in The Area, with a special emphasis on the chemical environment.' Chapter 5. In: Proceedings of the International Seabed Authority's Workshop, September 2004. pp. 108–135 (http://www.isa.org.jm/en/documents/ publications).

Hubbs, C.L. (1959). Initial discoveries of the fish faunas on the seamounts and offshore banks of the eastern Pacific. *Pacific Science* 13: pp.311-316.

Kinlan, B.P. and S.D. Gaines (2003). Propagule dispersal in marine and terrestrial environments: a community perspective. *Ecology* 84: pp. 2007–2020.

Kitchingman, A., S. Lai, T. Morato and D. Pauly (2007). 'How many seamounts are there and where are they located?' Chapter 2. pp. 26–40. In: Pitcher, T.J. and T. Morato et al., op cit.

Koslow, J.A. (2007). 'The biological environment of cobalt-rich ferromanganese crusts deposits, the potential impact of exploration and mining on this environment, and data required to establish environmental baselines.' Chapter 12 In: Proceedings of the International Seabed Authority's Workshop, September 2004. pp. 274–286 (http://www.isa.org.jm/en/documents/publications).

Koslow, J.A., K. Gowlett-Holmes, J.K. Lowry, T. O'Hara, G.C.B. Poore and A. Williams (2001). Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Marine Ecology Progress Series 213: pp. 111-125.

McClain, C.R. (2007). Guest Editorial: Seamounts: identity crisis or split personality? *Journal of Biogeography*, doi:10.1111/j.1365-2699.2007.01783.x.

O'Hara, T.D. (2007). Seamounts: Centres of endemism or species richness for ophiuroids? *Global Ecology and Biogeography* 16: pp.720–32

Parin, N.V., A.N. Mironov and K.N. Nesis (1997). Biology of the Nazca and Sala y Gomez submarine ridges, and outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: Composition and distribution of the fauna, its communities and history. *Advances in Marine Biology* 32: pp.145–242

Parker T. and V. Tunnicliffe (1994). Dispersal strategies of the biota on an oceanic seamount: Implications for ecology and biogeography. *Biological Bulletin* 187: pp. 336–45.

Parrish, F.A. and A.R. Baco (2007). 'State of Deep Coral Ecosystems in the United States Western Pacific Region: Hawaii and the United States Pacific Islands.' Chapter 4, pp. 155-194. In: In:The State of Deep Coral Ecosystems of the United States. S.E. Lumsden and T.F. Hourigan, et al. (eds.), *NOAA Technical Memorandum* CRCP-3. Silver Spring MD, 365 pp.

Pitcher, T.J. and T. Morato et al. (eds). (2007). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series 12. Blackwell Publishing, Oxford. 527 pp.

Richer de Forges, B.R., J.A. Koslow and G.C.B. Poore (2000). Diversity and endemism of the benthic seamount fauna in the southwest Pacific. *Nature* 405: pp. 944-946.

Rogers, A.D. (1994). The biology of seamounts. *Advances in Marine Biology* 30: pp. 305-351.

Rogers, A.D. and A. Baco, et al., (2007). 'Corals on seamounts.' Chapter 8, pp. 141–169. In: Pitcher, T.J. and T. Morato et al., op cit.

Samadi, S. and L. Bottan, et al., (2006). Seamount endemism questioned by the geographical distribution and population genetic structure of marine invertebrates. *Marine Biology* 149: pp 1463-1475.

Stocks, K.I. and P.J.B. Hart (2007). 'Biogeography and biodiversity of seamounts.' Chapter 13, pp. 255–281. In: Pitcher, T.J. and T. Morato et al., op cit.

Stocks, K.I., G.W. Boehlert, and J.F. Dower (2004). Towards an international field programme on seamounts within the Census of Marine Life. *Arch. Fish. Mar. Res. 51:* pp. 320-27

Tittensor, D.P. and A.R. Baco-Taylor et al (2009). Predicting global habitat suitability for stony corals on seamounts. *Journal of Biogeography*. doi:10.1111/j.1365-2699.2008.02062.x

United Nations Division for Ocean Affairs and the Law of the Sea and International Seabed Authority (2004). *Marine mineral resources: scientific advances and economic perspectives*. International Seabed Authority, Jamaica. 118 p.

Van Dover, C.L. (2000). *The ecology of deep-sea hydrothermal vents*. Princeton University Press, Princeton, NJ, 352 pp.

Veillette, J. and J. Sarrazin et al., (2007). Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. *Deep-Sea Research* Pt1 54: 1912–1935

Wessel, P. (2001). Global distribution of seamounts inferred from gridded Geosat/ ERS-1 altimetry. *Journal of Geophysical Research* 106 (B9): pp. 19431-4412001. Wilson, R.R. and R.S. Kaufmann (1987). 'Seamount biota and biogeography.' Pp 355-377. In: Seamounts, Islands and Atolls. B.H. Keating et al. (eds). Geophysical Monograph 43, American Geophysical Union, Washington, D.C.

Wilson, R.R.; K.L. Smith Jr. and R.H. Rosenblatt (1985). Megafauna associated with bathyal seamounts in the central North Pacific Ocean. *Deep-Sea Research* 32(10): pp. 1243–1254.

Zhou, H. (2007). 'The chemical environment of cobalt-rich ferromanganese crust deposits, the potential impact of exploration and mining on this environment and data required to establish environmental baselines in exploration areas.' Chapter 11 In: Proceedings of the International Seabed Authority's Workshop, September 2004. pp. 257–267 (http://www.isa.org.jm/en/documents/publications).

Seamounts in the central-west Pacific Ocean are known to have thick, cobalt-rich ferromanganese crusts. These are of commercial interest for mining. However, very little is known about the faunal communities on these seamounts, and in particular whether they could be different from those that occur on seamounts which do not have thick cobalt-rich crusts. Such information is fundamental to evaluating the potential impacts of mining operations, and formulating environmental guidelines for mining operations. This study was commissioned by the International Seabed Authority to assess patterns of community composition and diversity on seamounts with, and without, cobalt-rich crusts, and the factors that determine these patterns.

This study has provided a considerable advance in the knowledge of the biodiversity of cobalt-rich crusts, and factors that might drive community composition. However, the database and analyses can be expanded to improve the results. In particular, data on substrate type can be incorporated, and analyses can extend beyond presence-absence to include abundance. It is important to examine both of these factors in order to confirm the implication of the present study; that there is no effect of crust composition on the fauna. A workshop has been completed to review the present results, and to undertake further analyses.

