

active, inactive, and extinct sulfide occurrences: biodiversity and ecosystem setting, including connectivity Cindy Lee Van Dover Duke University

refer to REA for a very competent review

DRAFT ONLY; NOT TO QUOTE Note: This draft will be further refined based on the comments from the workshop participants.

DRAFT Regional Environmental Assessment of the Mid-Atlantic Ridge

Draft Document prepared by the Atlantic REMP project to support the ISA Secretariat in facilitating the development of a Regional Environmental Management Plan for the Area in the North Atlantic by the International Seabed Authority

Supported by

Legal Notice

This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

Disclaimer by ISA secretariat:

The views expressed are those of the author(s) and do not necessarily reflect those of the International Seabed Authority.

GLOBALLY RARE HABITATS

distribution of known active^{*} and inactive sulfides

*globally an area ~50 km²

BY1: Arctic BY2: Northern Atlantic Boreal BY3: Northern Pacific Boreal BY4: North Atlantic BY5: Southeast Pacific Ridges BY6: New Zealand-Kermadec BY7: Cocos Plate BY8: Nazca Plate BY9: Antarctic BY10: Subantarctic

BY11: Indian BY12: West Pacific BY13: South Atlantic BY14: North Pacific

Watling et al. 2013

BIOGEOGRAPHICAL CONTEXT

• Lower Bathyal and Hadal Provinces

finer-scale biogeography Breusing et al. 2016 (90 SNPs, 9 msats, mND4)

Refinement of Management Units: Mid-Water Connectivity (ARGO floats)

Yearsley et al. unpublished

Karson et al 2013

MAR Active Vent Heterogeneity

Contribution of non-vent fauna decreases with depth

Dèsbruyeres et al. 2000

Inactive Sulfide Ecosystems

Currently, these are data-poor ecosystems on the MAR and mid-ocean ridges in general

ISA Definitions (ISBA/25/LTC/6)

Active sulfides

Polymetallic sulfides through which warm or hot water is flowing.

Inactive (or dormant) sulfides

Polymetallic sulfides through which water is no longer flowing into the overlying seawater (i.e., they are "cold").

Disturbance of these sulfides may result in renewal of hydrothermal fluxes into the water column, turning inactive sulfides into active sulfides, hence the concept of "dormant" sulfides.

Extinct sulfides

To be added (recommendation from Galway workshop)

A Sulfide Classification Scheme

Sulfide Classification	Location	Ecosystem Brief
Active occurrence	Especially typical of fast spreading centers	Ephemeral (decadal scale), with endemic taxa
Inactive occurrence	Especially typical of fast spreading centers	Ephemeral (decadal scale), without endemic taxa (?)
Potential active deposit includes active sulfide ecosystems and active/inactive sulfide complex ecosystems	Most likely at intermediate, slow, and ultraslow spreading centers, and some seamounts	Persistent (millennial+ scale) habitats, with endemic taxa
Potential inactive deposit may be <i>near- or far-field</i> (relative to active deposits) and/or <i>sediment-</i> <i>covered</i>	Most likely at intermediate, slow, and ultraslow spreading centers, off-axis of these spreading centers, and some seamounts	Persistent (millennial+ scale) habitats; may be colonized by suspension-feeding and microcarnivorous invertebrates; possibly colonized by specialist taxa but so far this remains speculation

subsurface linkages?

Meier 2016

reactivation of venting

ODP Drill Holes

Zierenberg et al. 1998

also Jamieson & Gartman, in review

inactive/dorment or extinct?

How does reactivation of hydrothermal flow in an adjacent sulfide deposit impact an active vent ecosystem?

Are there geophysical tools that can distinguish dormant and extinct deposits in advance of a drilling or mining disturbance?

Microbial Succession

active to inactive sulfides

Kato et al. 2010

COMPARISON OF MICROBIAL SERVICES

SERVICES	active sulfides	inactive/extinct sulfides
primary production		
endosymbiosis		
nutrient regeneration		<u>ې</u>
regulation of toxic gases (CH ₄ , H ₂ S)		
carbon sequestration	•	•
genetic resources		
cultural & educational value		•
scientific research		

critical value, well understood, high vulnerability
major value, well understood, low vulnerability
minor value, well understood, low vulnerability
major value, poorly understood, low vulnerability

minor value, poorly understood, low vulnerability

modified from Orcutt et al. 2018

inactive sulfides: environmental risks/concerns to evaluate

- Modification of nearby hydrothermal activity
- Indirect effects at active vents (e.g., from plumes, light)
- Vulnerability of background fauna and pelagic systems to metal toxicity, particle deposition
- Loss of inactive sulfide habitat, including local topographic highs
- Loss of connectivity of putative endemic taxa
- Effects of removal of overburden
- Cumulative impacts of mining multiple sites
- Effective monitoring and assessment of impacts

environmental management needs specific to inactive sulfides

- Ecological characterization of inactive sulfide ecosystems, including connectivity
- Characterization of any overburden and its biota
- Distribution and size of occurrences/deposits
- Hydrothermal linkages among occurrences/deposits
- Monitoring of overburden deposition sites

partial excerpt from Galway workshop reports

Some Key Points

- There are genetic and hydrographic indications that finer-scale biogeographic patterns than those of, for example, Watling et al. (2013) may be important to consider as management subunits.
- Active vent ecosystems are diverse, with heterogeneity along the ridge axis driven by geological settings and fluid chemistries, among other factors.
- There is scientific consensus that active vent ecosystems are vulnerable to serious harm from mining activities and should not be mined.
- Inactive sulfide ecosystems are poorly described and represent a huge knowledge gap.
- One of the greatest environmental concerns about mining inactive sulfides is the potential for serious impacts to active sulfide ecosystems.