
WHERE SHOULD METALS FOR THE GREEN TRANSITION COME FROM?

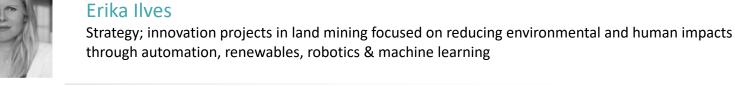
Daina Paulikas, MSc | Steven Katona, PhD Prepared for ISA Assembly side event 24 July 2019 – Kingston, Jamaica

Today's findings are based on 9 months of primary and secondary analyses by an inter-disciplinary team

Daina Paulikas

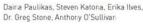
Dr Steven Katona

founder; sustainability consultant


WHERE SHOULD METALS FOR THE GREEN TRANSITION COME FROM?

Comparing Environmental and Social Impacts of Supplying Base Metals from Land Ores and Seafloor Polymetallic Nodules

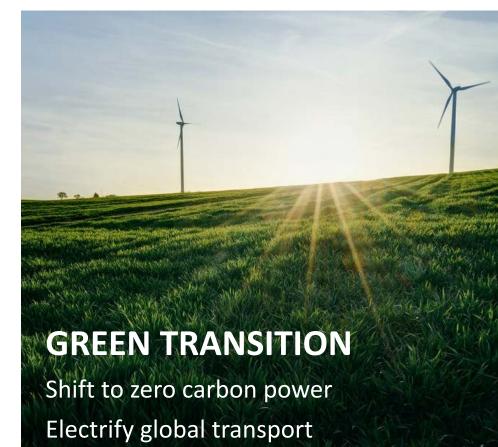
Tony O'Sullivan


Geology; global base metal exploration on land, mining project development on land and in the ocean

Strategic and analytical projects; large-scale systems engineering, international economic development, public policy design, human process improvements & artificial intelligence

Marine biology and ecology; global ecological systems; whale research; ocean health index co-

Dr Greg Stone


Ocean conservation; ocean health index co-founder, ocean research and technology, marine protected areas design

July 2019

Motivation

The green transition will require millions of tonnes of base metals

Electrify industrial processes

CUMULATIVE REQUIREMENT by 2050

392 mil

million tonnes of Copper

102

h

million tonnes of Manganese

7 million tonnes of Nickel

million tonnes of Cobalt

Motivation

Understanding the impacts of supplying a new massive demand for metals is critical given the severity of climate crisis...

Annual global temperatures from 1850-2017

The scale represents the change in global temperatures, covering 1.35°C, with the color of each stripe representing a single year.

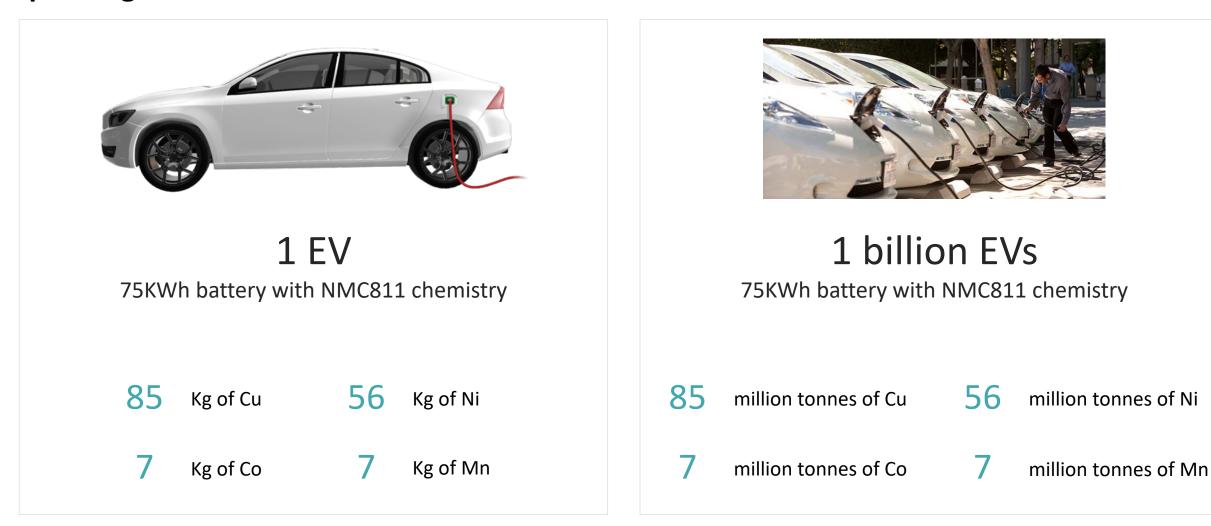
Motivation ...and wildlife crisis

IPBES Global Assessment of Biodiversity & Ecosystem Services, May 2019

reduction in wild animal biomass

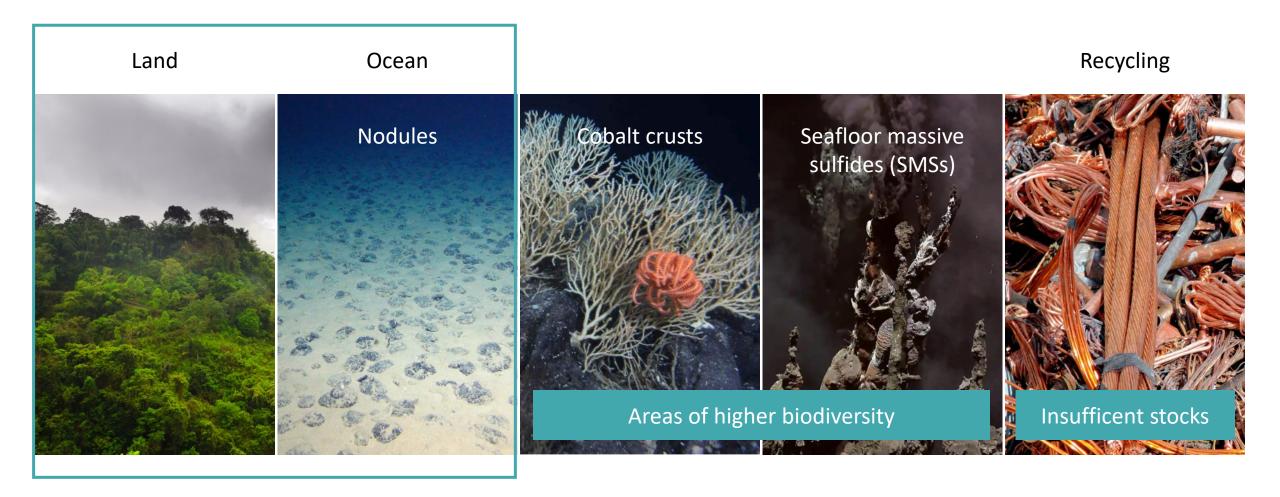
~50%

area loss for natural ecosystems species at risk of extinction

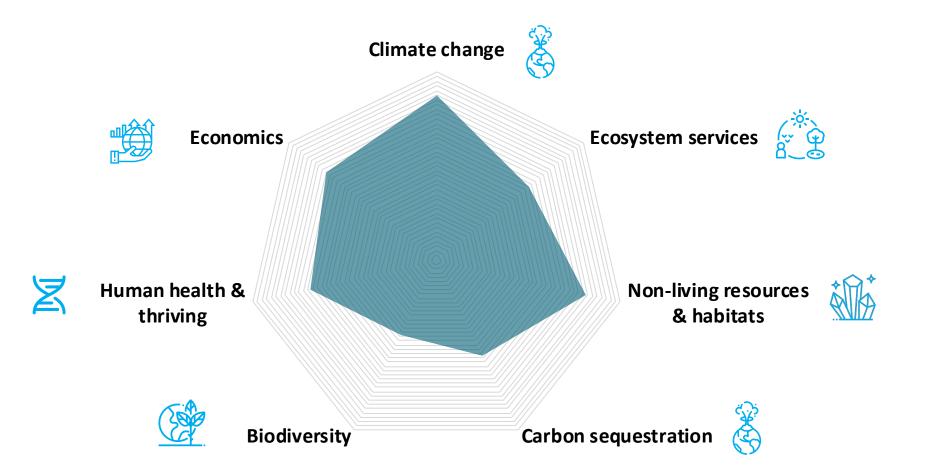

5

Forest clearance in Indonesia. Deforestation destroys wild life habitats.

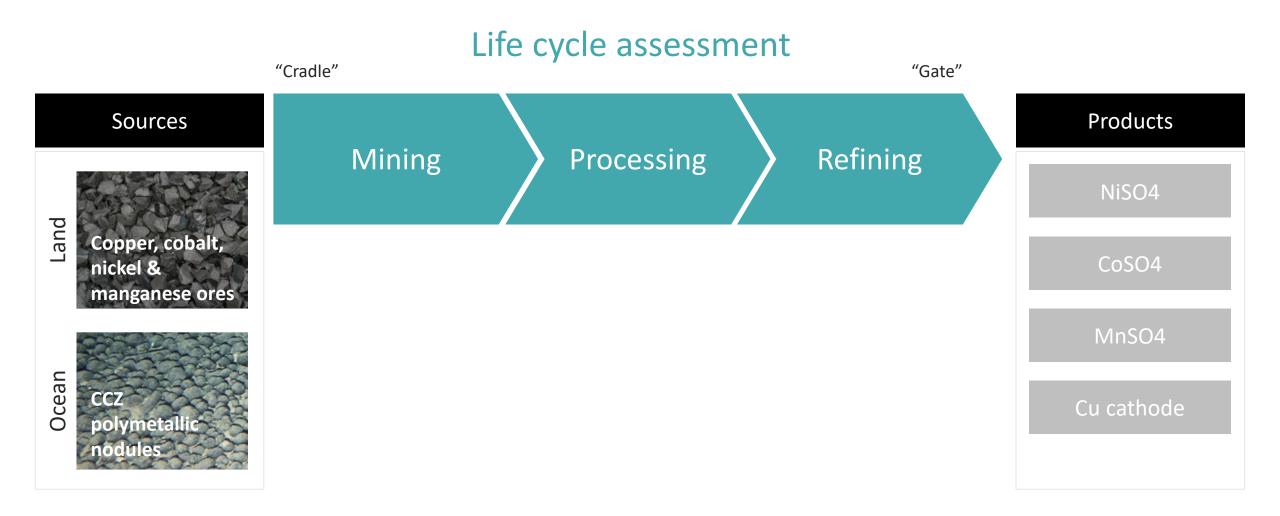
Photo credit: Ulet Ifansasti/Greenpeace


Motivation

We focused on the specific case of supplying the electrification of the global passenger fleet...


Motivation

...and compared impacts of producing required metal from two primary sources: land ores and ocean nodules


Impacts

We assessed seven major impact categories...

Methodology

...across cradle-to-gate life cycle of four metal products that go into EV manufacturing

Sources

For land ores we relied mainly on secondary research and for nodules we conducted primary analyses on climate change impact

	Impact categories	Land ores	Ocean nodules
	Climate change & carbon sequestration	Secondary research using peer-reviewed publications of life cycle assessments of nickel, cobalt, manganese, and copper, including van der Voet et al. (2018), Dai et al. (2018), Kuipers et al. (2018), Westfall et al. (2016), and Nuss et al. (2014). Relevant production paths for nickel laterite and sulfide trends from Mudd and Jowitt (2014), International Nickel Study Group (2018); USGS (2018) and Cobalt Institute (2019) for cobalt. Demand projections from Morgan Stanley (2017); ore degradation and fossil fuel projections from e.g., van der Voet et al. (2018) following UNEP GEO-4 and IEA.	Primary analysis to create life cycle inventory data for CCZ nodule collection. Sources include: Nori Area D resource assessment; preliminary economic assessments for all four metals; detailed engineering plans, on-land processing and refinery detailed design, input and output flow analyses, and site selection planning; materials and energy flows background database (Ecoinvent v2.2); Morgan Stanley (2017) scenarios for demand; and LCA and LCSA modeling literature such as UNEP (2016) and Guinee et. al. (2016).
\$_}}	Ecosystem services	Followed Pushpam (2010) and Millenium Ecosystem Assessment (2005) standards to collate known impacts across the four major ES categories using extensive literature sources.	Followed Pushpam (2010) and Millenium Ecosystem Assessment (2005) standards to collate known impacts across the four major ES categories using extensive sources such as World Ocean Review (2010).
	Non-living resources & habitats	Observed impacts to air, land, water, habitats, and carbon sequestration from broad sources including Dai et al. (2018), ICMM (2012), Singh (2010), Sanamarina et al. (2019), Sauer and Miranda (2010), Blight (2011), EPA (2019), European Environment Agency (2015), and Blacksmith Institute (2007).	Predicted impacts to air, land, water, habitats, and carbon sequestration based on analyses of detailed engineering and nodule processing designs and site selection planning; literature sources e.g., World Ocean Review (2010), Jones et al. (2017); Woods Hole Oceanography Institution, and University of Virginia.
	Biodiversity	Data on the number and diversity of species in common terrestrial mining settings from, e.g., Costello and Chaudhary (2017), Zhang (2017), Butler (2016), Royal Botanical Gardens (2019), Veron et. al. (2017), Webster (1977), Horak (2004). Mechanisms of potential and realized impacts from mining from, e.g., EPA (2014), Sonter et. al. (2017), Pena et. al. (2017), Woods (2016), 2019 Goldman Environmental Prize, Mongolia (2019), Miranda and Marques (2016), and Snow Leopard Trust (2018).	Data on the number and diversity of species on the deep-sea floor, particularly CCZ, from, e.g., Ramierz-Llondra et al. (2011), Miller et al. (2018), Simon-Lledo et al. (2019), Purser et al. (2016), Bardgett and van der Putten (2014). Mechanisms of potential impacts from nodule collection from, e.g., Varnreusel et al. (2016), Christiansen et al. (2019), Secretariat of the Pacific Community (2013), Robinson (2009), GSR (2018), Paul et al. (2018), Jones et al. (2017), and Danovaro et al. (2008).
×	Human health & thriving	Past impacts to human health and communities collected from Lang (2010), International Manganese Institute Risk and Policy Analysts (2015), Department of Mineral Resources, South Africa (2017), ENCA (2015), Mine Safety and Health Administration (2019), Seymour (2005), Pure Earth and Green Cross Switzerland (2016), World Bank Group (2005), Aldana and Abate (2016), and others.	Potential impacts to human health and communities isolated due to CCZ's remoteness from human communities. Impacts analyzed based on known attributes of the CCZ. Ship-related human health issues modeled using literature sources e.g., the European Marine Safety Agency (2018) and Allianz (2015).
	Economics	Price impacts and national economy impacts based on analyses of C1 cost curves and future market projections for each metal, including position of individual countries' operations on the cost curve, metals' elasticity of demand, production volumes, GDP data, costs of mine reclamation, and risks of mine collapse.	Price impacts and national economy impacts based on analyses preliminary economic assessments and detailed engineering plans, C1 cost curves and future market projections for each metal, position of nodule metals on the cost curve, metals' elasticity of demand, production volumes, GDP data, and ISA's proposed royalties and sponsor-country contributions plan.

Land ores / production process

Community relocation Wasterock generation Marine water pollution

Noise pollution

Producing metals from land-ores is an energy-intensive process with serious impacts at every step

		Mining	Transport		Processing	Transp	ort	Refining	
Mineral Resources in Land or Ocean		Remove metal ores from the earth. May crush and/or concentrate boulders into higher grades.	Mineral Ores, Medium Grade Concentrates	cl p o	lse water, heat or hemical based processes to separate but metal ompounds.	Meta Intermed		Refine metals from intermediary forms into pure metals or alloys.	Final Metals or Alloys ready for Manufacture
	Tailings generation Risk to downstream communities Biodiversity loss CO ₂ emissions SO _x and NO _x emissions Acid drainage Freshwater contamination Freshwater depletion Human death & illness Habitat loss and degradation Topsoil loss Deforestation Carbon sequestration impact Vulnerable pop. exploitation		Fossil fuel-based electricity CO ₂ emissions (direct) SO _x & NO _x emissions (direct) CO ₂ emissions (materials) Tailings generation Residue, waste, slag generation Toxic chemicals release Acid drainage Freshwater depletion Freshwater contamination				Fossil fuel-based electricity CO ₂ emissions (direct) SO _x & NO _x emissions (direct) CO ₂ emissions (materials) Tailings generation Residue, waste, slag generation Toxic chemicals release Acid drainage Freshwater depletion Freshwater contamination		

Ocean nodules / production process

Mining

Collect nodules from

the seabed floor and

transport to the

surface using a

vertical lift system.

Producing metals from polymetallic nodules has a different operational and impact profile both during mining as well as processing & refining

Processing

Use heat and

out metal

compounds.

chemical based

processes to separate

Polymetallic Nodules on Sea Floor

potential impacts

Key

Wet Nodules

Ship Transport

CO₂ emissions SO_x & NO_x emissions **Biodiversity** loss Nodule removal Sediment resuspension and deposition Compaction of surface sediment Discharge of sediment and water Underwater noise

Surface vessel's noise, light & waste

CO₂ emissions (direct) CO₂ emissions (materials) SO_x emissions (direct) Disruption of carbon sequestration (land use)

Intermediates

Metal

Transport

Final Allovs ready for Manufacture

CO₂ emissions (direct) CO₂ emissions (materials)

Refining

Refine metals from

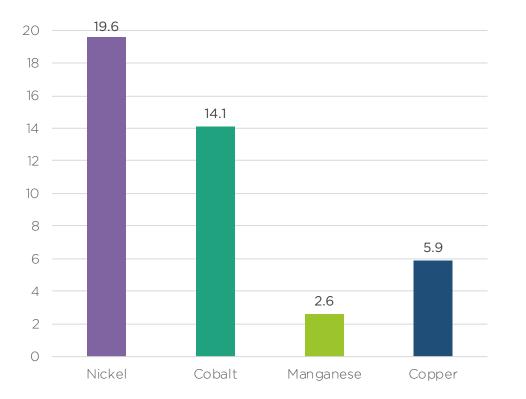
intermediary forms

into metal products

that go directly into

EV battery production

Climate change


'Global Warming Potential' or GWP

Land ores

Cradle-to-gate, every kg of EV metals produced from land ores today generates 2-20 kg of greenhouse gas emissions

Climate change impact of metal production from conventional land ores

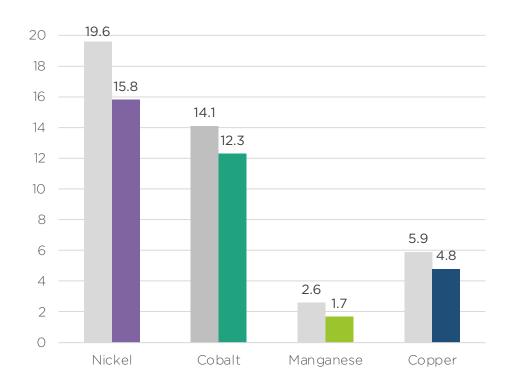
kg of CO_2e / per kg of metal

Business as usual scenario

Continuing current situation assuming:

- No depletion of the world's resources and no technology improvements
- Today's mix of electricity
- Today's production pathways
- Today's ore grades

Emissions allocated based on the economic value of the product – the more valuable the product, the higher its CO_2 allocation



Land ores

It is possible for miners to invest in significant improvements but most of the gains will be offset by declining ore grades

Climate change impact of metal production from conventional land ores

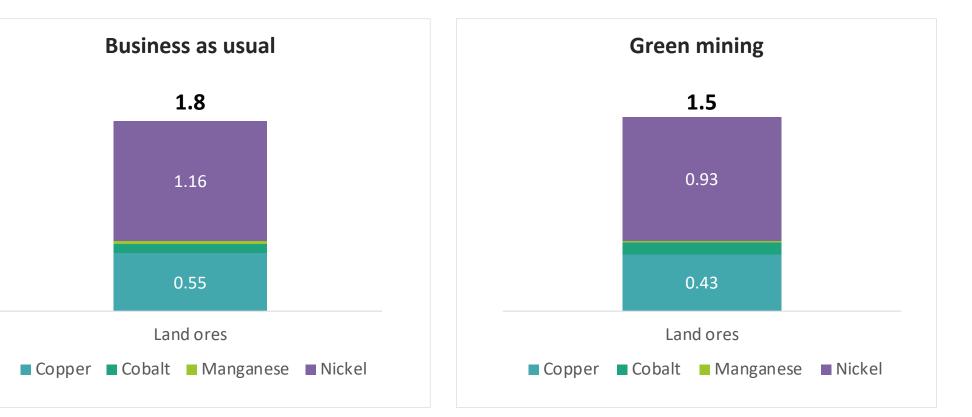
kg of CO_2e / per kg of metal

Green mining scenario

Rapid and ambitious transformation assuming:

- Strong global policy actions to limit temp increase to 2 degrees C
- Reduction in fossil fuel share of electricity, from 70% in 2019 to 43% in 2047
- Energy efficiency gains in Cu production towards practical minimum
- Ore grade continue to fall Ni from 1.25% to 1.0%, Cu from 0.7% to 0.45% by 2047.
 Increases energy needs, emissions & waste

Scenario integrates IEA WEO "450 Scenario," UNEP GEO-4 "Equitability First Scenario," and literature on ore grades and production efficiency

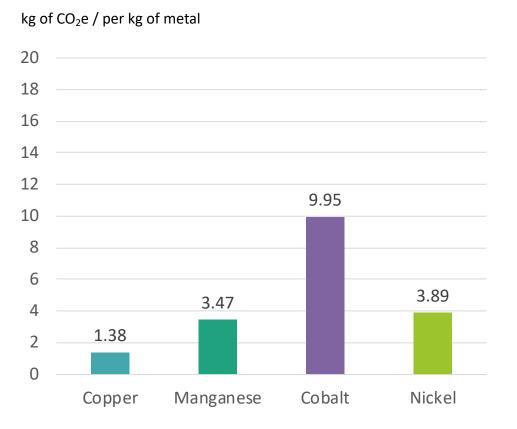


Supplying 1 billion EVs with metals produced from land ores will add gigatons of CO₂e even in the most ambitious green scenario

Electrifying 1 billion vehicles

Land ores

Gigatonnes of CO₂e attributable to production of battery cathode metals and copper 2018-2047



Ocean nodules

Cradle-to-gate, every kg of EV metals produced from nodules will produce 1-10 kg CO_2e

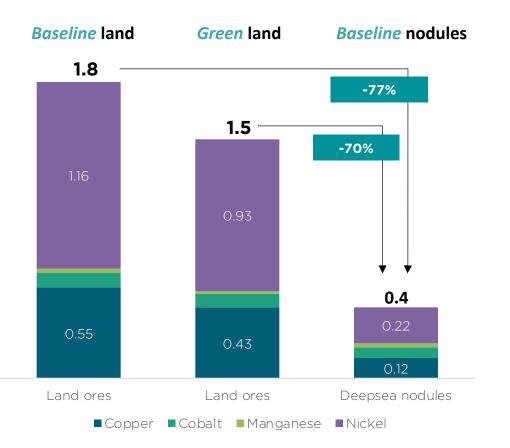
Climate change impact of metal production from ocean nodules

Base case scenario

Based on planned concepts of operations and independent preliminary economic analysis

- High-volume offshore nodule collection system using tracked seabed harvesters with hydraulic collection tools, sediment separation and vertical lift system (riser) to the surface
- Processing & refining flowsheet designed for zero solid waste
- Onshore sites selected based on proximity to customers and access to hydropower

Emissions allocated based on the economic value of the product – the more valuable the product, the higher its CO₂ allocation. If, instead, allocating by mass, Cobalt and Nickel drop < 2 kg CO₂e.



Ocean nodules

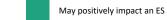
Supplying 1 billion EVs with metals produced from ocean nodules will save 1-1.5 gigatonnes of CO_2e —with options to get to 'net zero'

Electrifying 1 billion vehicles

Gigatonnes of CO_2e attributable to production of battery cathode metals and copper 2018-2047

Pathways for nodules to get to net zero CO₂e emissions

- Using excess power from oversized renewable plants to produce zero-CO₂ fuels to power offshore operations
- Using excess renewable power to produce alternates (e.g., hydrogen) for use as a reductant in place of coal – the largest single CO₂e driver in nodules processing
- Other ongoing exploration of technologies and pathways to get to net-zero CO₂ onshore operations as the industry matures



Ecosystem Services

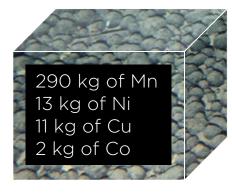
Ecosystem services

Land-mining negatively impacts most ecosystem services

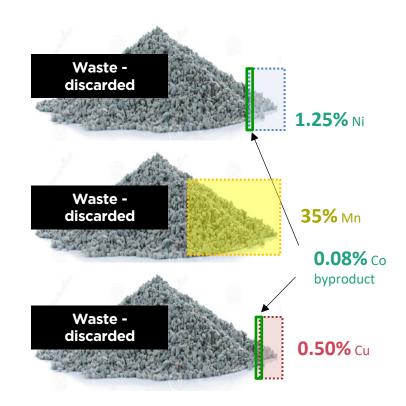
Ecosystem Service Category	Land ores	Ocean Nodules
Provisioning		
Food	Habitat cleared. Erosion. Toxins	Low or none
Water	Excessive withdrawal. Pollution	Little water for processing
Raw materials (e.g., wood, fiber)	Loss of trees and vegetation	Low second order effects
Genetic resources	Potential loss of endemic species	Possible, but uncertain
Medicinal Resources	Potential loss of endemic species	Possible, but uncertain
Ornamental Resources	Damage to vegetation and species	Low or none
Regulating		
Air Quality Regulation	Blasting and toxic dusts, particulates, emissions	Some from vessel, refining
Climate Regulation	Loss of soil and vegetation	Low or none
Moderation of Extreme Events	Loss of soil and vegetation	Low or none
Regulation of Water Flows	Water drawdown and pollution	Water for processing
Waste Treatment	Loss of soil and vegetation	Low or none
Erosion Prevention	Loss of soil and vegetation	Low or none
Maintenance of Soil Fertility	Toxic dusts, polluted water, vegetation	Low or none
Pollination	Vegetation loss, toxic dusts and water	Low or none
Biological control	Harm to vegetation and aquatic life	Possible, but uncertain
Habitat		
Habitat for Resident/Migr Species	Noise, pollution, vegetation loss, tailings dams	Noise, light, substrate loss
Maintenance of Genetic Diversity	Potential loss of endemic species	Possible species loss
Cultural		
Aesthetic Information	Excavation, noise, species loss	Low or none
Opp. for Recreation & Tourism	Exclusion areas, fish kills, noise	Low or none
Inspirational Culture, Arts, Design	Jewelry, tools, lore, books, films	Low or none
Spiritual Experience	Harm to/exclusion from sacred sites	Low or none
Info. for Cognitive Development	Has stimulated technological developments	Science, knowledge, tech growth

May have serious negative impact on an ES

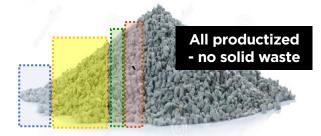
3.4 times more ore needs to be dug out on land to get at the metals contained in 1 tonne of nodules



3,440 kg


1,000 kg

This is because three types of ore bodies need to be mined on land to get at metal contained in nodules

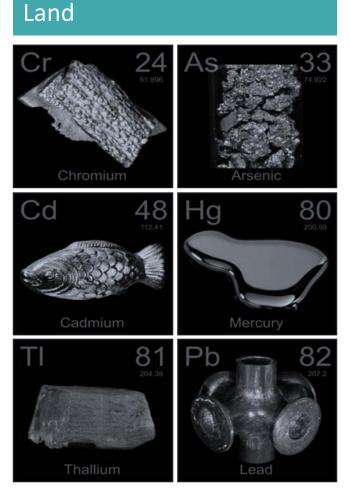

Land

Average grades of mined ores % of mined tonnage

Ocean nodules

Average grades of CCZ nodules % of total tonnage

1.30% Ni


29% Mn

0.20% Co

1.10% Cu

Land ores typically contain heavy metals in toxic concentrations—not found in nodules

Ocean nodules

Contain non-toxic trace amounts of heavy metals (parts per million) that don't require removal

As a result, land mining generates toxic tailings and waste streams that can contaminate local and regional habitats

Land

Ocean nodules

O tonnes

for 1 billion EVs

Depletion of freshwater is a major issue for land mining, less critical for nodules

Land

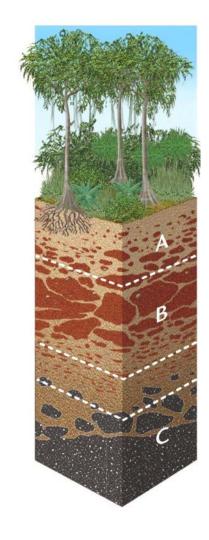
Milling, flotation, separation of ores Hydraulic / slurry transport Granulation Dust suppression Leaching Heating and cooling

Electro-refining Tailings management Revegetation Wastewater Employee needs

52 km³

for 1 billion EVs

Ocean nodules


Heating and cooling Granulation Employee needs

5 km³ for 1 billion EVs

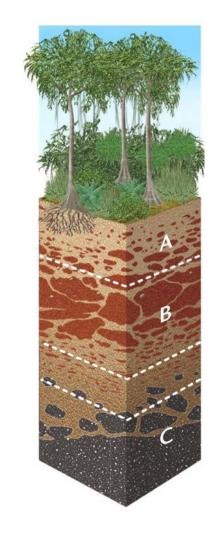
To understand impacts on carbon sequestration, we need to understand where carbon is stored

2,300 gigatons

of carbon stored in vegetation, soil & detritus on planet Earth

130 million km²

150 gigatons


of carbon stored in seabed surface sediments on planet Earth

 $354 \text{ million } km^2$

Sourcing metals for 1 billion EVs from land ores will put 2.2 gigatons of stored carbon at risk (=potential release of 8.1 Gt CO_2)

8.1 gigatons

of CO_2 is at risk of release from removing vegetation & soil ("overburden")

135,000 km²

land area impacted by mining for 1B EVs

~15,700 tonnes of organic carbon

stored on average per km² of soil & vegetation across all terrestrial biomes

Sourcing same amount of metals from nodules will risk near zero carbon offshore and ~0.16 Gt C onshore (=potential release of 0.6 Gt CO₂)

~0 gigatons

of CO₂ at risk from pumping water or disturbing the seabed sediments

~0.00016 gigatonnes of CO₂

at risk of from depressurization of deep seawater pumped to surface for 1B EVs

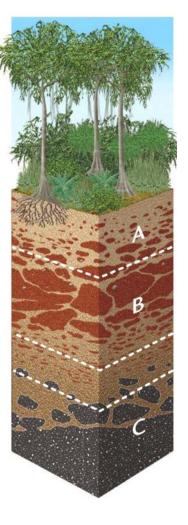
470,000 km²

seabed impacted by mining for 1B EVs (0.1% of global seabed)

~424 tonnes of organic carbon

stored on average per km2 of seabed surface sediments – but, these carboncontaining sediment particles do not reach the surface ...

0.6 gigatons

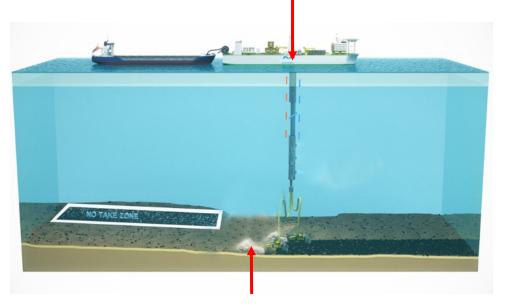

of CO₂ at risk from land use for processing & refining nodules

10,000 km²

land area impacted by processing and refining nodules for 1B EVs

~15,700 tonnes of organic carbon

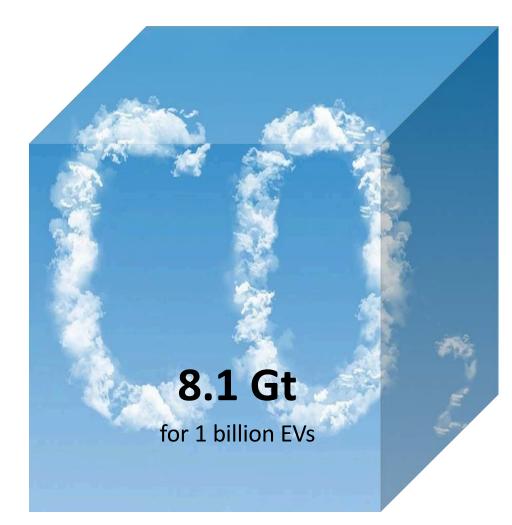
stored on average per km2 of soil & vegetation across all terrestrial biomes

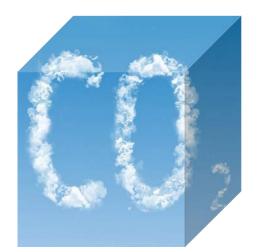


This is because carbon-bearing seabed sediments resettle on the seabed, carbon at risk of release from pumped deep seawater is negligible

Carbon in solution in deep seawater

Stored in ocean: 28 tons/ km³ At risk by nodule transfer to the surface: 0.00016 gigatons of CO₂

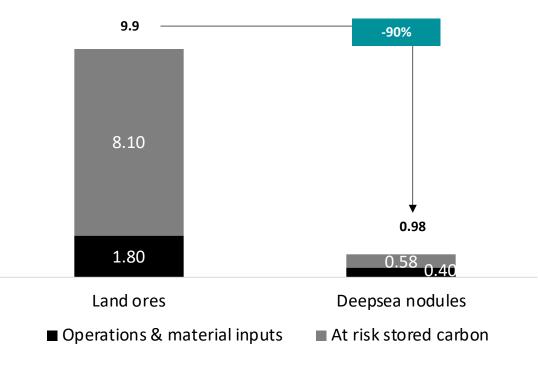

Why: deep seawater (higher carbon) pumped to the surface, exposed to atmosphere for up to 5 min before it is reinjected in midwater


Carbon in sediments

Stored in 470,000 km²: 0.2 gigatonnes At risk from nodule collection: close to zero Why: sediment rises max 200m above seabed and resettles

Land mining risks 14x more CO_2 release into the atmosphere from disturbing stored carbon than nodules

0.6 Gt for 1 billion EVs



Climate change & disruption of carbon sequestration

In total, sourcing metals from nodules could reduce CO_2e impact by 90%

Electrifying 1 billion vehicles

Gigatonnes of CO₂e attributable to production of battery cathode metals and copper 2018-2047

Biodiversity

Biodiversity

Despite the vastness of the ocean, there are six times more species on land, most still to be scientifically described

9-20 million species on Earth

~1.8 million species described scientifically

Land

29% of the surface area Est. 8-17 million species

> ~6x more species than in the ocean

Ocean

71% of the surface area Est. 1-3 million species

Biodiversity

Mining of base metals on land has moved to some of the most biodiverse places on planet Earth

Indonesia World's #1 nickel producer World's #3 in overall biodiversity **Democratic Republic of Congo** World's #1 cobalt producer World's #10 in overall biodiversity

Chile World's #1 copper producer

South Africa World's #1 manganese producer World's #13 in overall biodiversity

Exploration for nodules is currently taking place in a harsh, slow-changing and food-poor environment

Physical environment


- 3,800-5,500 meters depth
- Intense pressure (5,700-8,500 psi)
- Vast sedimentary seabed, oxic to 200 cm
- Gentle depressions, troughs, ridges,
- No sound or light except made by animals
- Variable coverage of nodules (avg. ~15 wet kg/m²)

Ecological environment

 Stable, food-poor, dependent on particles sinking from oligotrophic surface waters

Fascinating species have been discovered in the CCZ

Megafauna

- a. Holothurian
- b. Serpent star
- c. E Multi-nucleate, test-building single-celled organisms
- d. Soft coral
- e. Relicanthus, new order of Cnidaria
- f. Soft coral

Credit: Amon et al. 21016

Meiofauna

Meiofauna include many tiny species that live in between grains of sediment or sand.

Credit: C.R. McClain. 2010. An empire without food. Amer. Sci. 98(6)

Wildlife impacted by mining on land is very different from wildlife that would be impacted in the deep sea

Megafauna definitions

>40-45 kg weight >2 cm size

Individual organisms per m²

~232,000

- min estimated number of organisms per m² of soil
- Estimate includes nematodes, enchytraids, colembolans, mites, isopods, diplopods, and Earthworms
- Estimate excludes prokaryotes, fungi, arbuscular mycorrhizal species, protists

600

median organisms per m² of abyssal sediments

How do we trade off lives of different species?

Tarsius Tarsier

The Danagat-Caraga Tarsier, discovered in the 1970s, lives only on Danagat Is., Philippines, and is threated by 10 companies mine nickel ore Photo credit: Futurity.org

Sea cucumber

Photo credit ROV Kiel 6000, GEOMAR Helmholtz Centre for Ocean Research Kiel

Biodiversity impacts are not easily quantifiable but species extinction is a risk for both land and nodule mining

Land

Mining - land		Processing		Refining	
Species extinction risk Habitat removal Habitat degradation	Species extinction risk Habitat degradation from chemical pollution Indirect impact from worsening climate change through CO2e emissions from operations and risking release of sequestered carbon				

Nodules

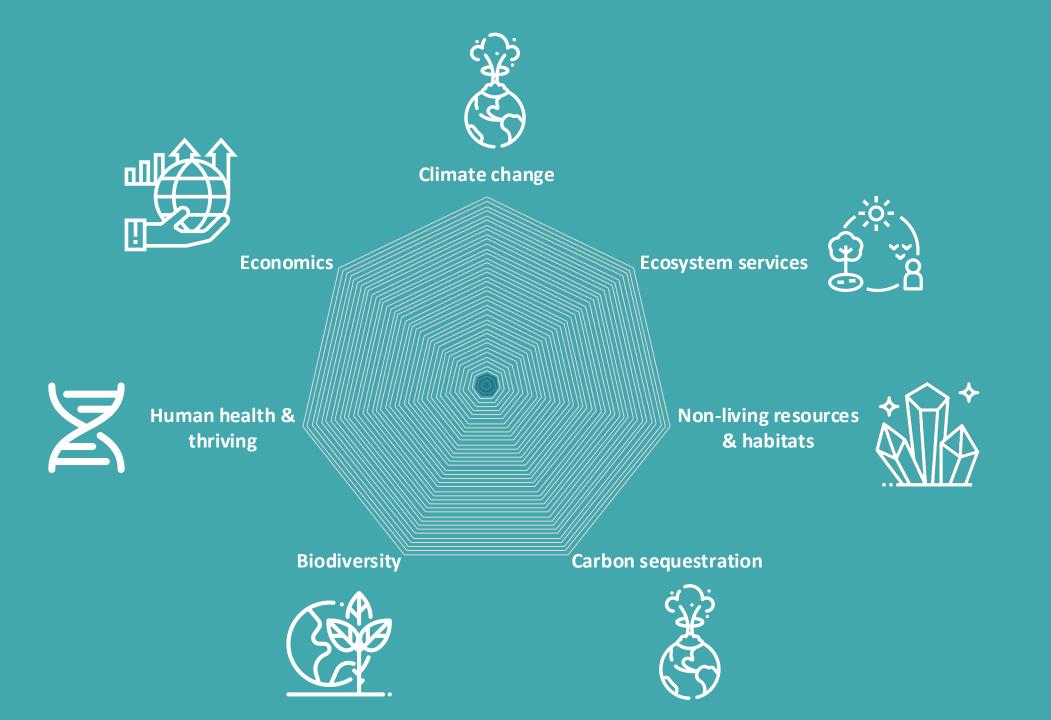
Mining – deep sea		Processing	\rangle	Refining
Species extinction risk Habitat removal Habitat degradation	Indi	ecies extinction risk rect impact from worsening ssions from operations and	g climate ch	ange through CO2e ase of sequestered carbon

Human health & thriving

Human health & thriving

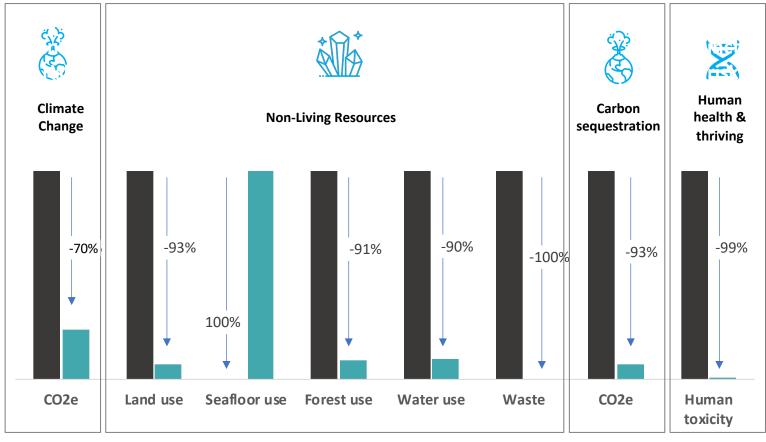
Land mining for equivalent metals causes hundreds of human deaths per year due to rock falls, terrace collapses and other accidents

Most recent incident: 27 June 2019


43 dead at Glencore copper-cobalt mine collapse in the Democratic Republic of Congo after terraces overlooking the main pit collapse

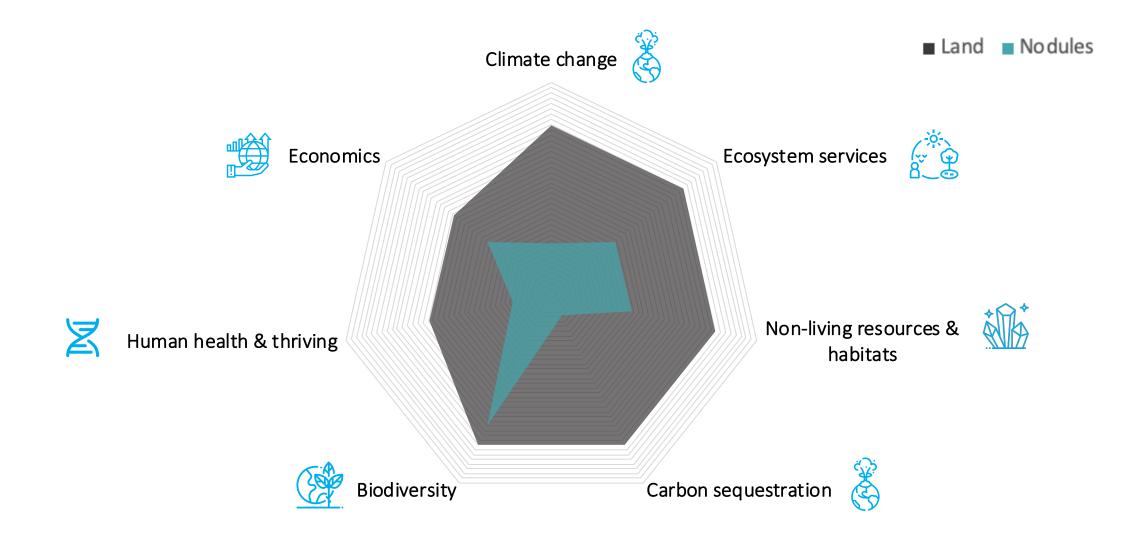
Human health & thriving

Artisanal cobalt mining in the DRC where 60% of cobalt is sourced can involve child labor


...using child miners in the Congo

~40,000 children are estimated to work in artisanal cobalt mines

Land ores vs. ocean nodules


Quantitative comparison of several impacts of metal production for 1 billion EV batteries sourced from land vs. nodules

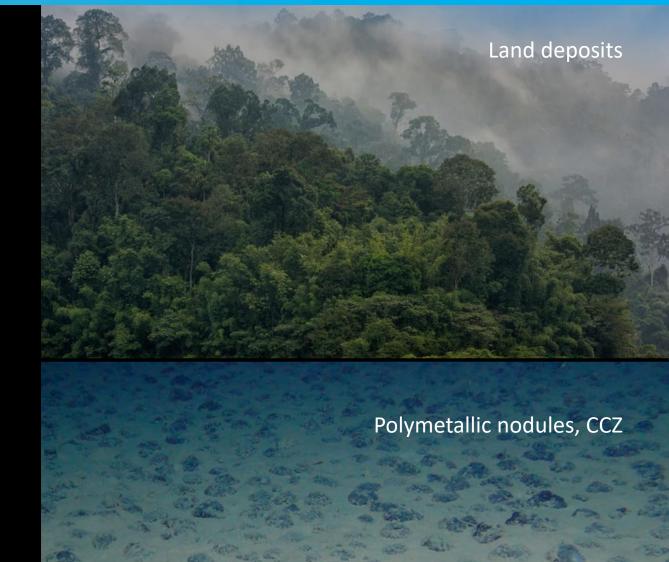
Land Nodules

Land ores vs. ocean nodules

Comparing the impacts of EV metal production across all major impact categories

Zero impact mining is not possible, anywhere.

Unfortunately.


The question we should be asking:

Where can we source metals with the least harm?

Think whole Earth. Think life cycle analysis. Across major impact categories.

THANK YOU

Daina Paulikas, MSc | Steven Katona, PhD Prepared for ISA Assembly side event 24 July 2019 – Kingston, Jamaica

