

Optimized, zero waste pyrometallurgical processing of polymetallic nodules from the German CCZ license area

David Friedmann, Marcus Sommerfeld, Bernd Friedrich (RWTH Aachen), <u>Thomas Kuhn</u>, Carsten Rühlemann (BGR)

Polymetallic nodule chemistry

Average chemical composition of nodules of the German territory:

	Mn	Ni	Cu	Со	Мо	V	Fe	Si	ΑΙ	Mg	Са	Zn
Wt%	31	1.4	1.2	0.16	0.06	0.06	6.2	5.9	2.3	1.9	1.6	0.15

Minerals are complex manganese and iron oxides and hydroxides (e.g. Buserite, Todorokite, Manganite or Goethite)

✓ Very fine, indistinct mineral particles (<< 1 µm)
 → Beneficiation of e.g. a NiCu-concentrate is unsuccessful

Clarion Clipperton Zone - License Areas

© BGR

Hydrometallurgical processing – bottom line

Advantages:

- → Energy intensive drying (mainly) redundant
- → Generation of "pure" metals (Ni, Cu, Co) possible via electrolysis
- → Limited CO₂ emissions compared to pyrometallurgy

Nickel © Thyssen

Disadvantages:

- Large amounts of waste products and wastewater
- Production of Manganese product uneconomical
- → Intensive consumption of chemicals
- Costly solution treatment through precipitation, pH adjustment etc.
- Complex multi-stage organic Solvent-Extraction (SX) necessary
- → Low throughputs

Red mud landfill © GreenPeace

Laboratory-SX

Simplified process developed in the 1970s by INCO

Key Aspects for a Successful Zero-Waste Concept

Main Goal:

Separation of valuable metal stream (Ni, Cu, Co, Mo; **2.5 – 3 wt%**) from Mn-stream (**> 30 wt%**) early in the process

Additional Goals:

- Complete use of Mn-bearing material stream
- Metal-recovery rates > 95%
- Recycling of flue dusts
- Slag design for high metal recovery and usable final slag

Simplified process for direct nodule smelting

Slag Design and FactSage[™] Models

Metallurgical challenges:

Comparison MnO contents: BGR: > 45 wt% INCO: 30 wt%

- Significantly higher liquidus temperature of autogenic slag
- → > 1500 °C: Mn reduction thermodynamically significant

Experimental Setup – Lab-scale SAF at IME

- Power supply: 3 100 kW DC
- Up to 6 L melt volume
- Optionally with graphite crucible insert

Experimental Results – 1. Smelting Step

Experimental Results – 1. Nodule Smelting Step

Simplified process for direct nodule smelting

Addition of flux and resulting liquidus temperature

Fluxing¤	5%∙ <u>CaO</u> ¤	15% ∙<u>MgO</u>¤	15% ·<u>CaO-MgO</u>¤	15%· <u>CaO</u> ¤	30% ·<u>CaO</u>¤
<u>T_{Liq}·in·°C</u> ¤	1308¤	1409¤	1335¤	1351¤	1401¤
B¤	0.48¤	0.91¤	0.91¤	0.91¤	1.55¤

Experimental Results – 2. Smelting Step

Modelled with FactSage[™]

Experimental Results – 2. Smelting Step

Element content of ferromanganese (wt. -%)

e in /%	15 % CaO						
Werl Gew	15.11/1	15.11/2	Fact- Sage				
С	6,73	6,77	6,54				
Cu	0,39	0,55	0,90				
Fe	3, <mark>34</mark>	4,45	7,65				
Mn	86,1	85,9	82,64				
Ni	0,30	0,43	0,33				
Р	0,19	0,40	0,03				
Si	2,63	1,25	1,76				
Ti	0,17	0,05	0,00				
V	0,21	0,17	0,13				
m in g	974,6	800,4	1063,3				

XRF analyses, RWTH Achen, Sommmerfeld, 2018

Ferromangan (carburé, high-C): DIN 17564

Wt.-%

Mn: 75 - 80 — C: 6.0 - 8.0 \checkmark P: 0 - 0.25 \checkmark Si: 0 - 1.0 — Ti: 0 - 0.20 \checkmark V: 0 - 0.20 \checkmark Cu: 0 - 0.013 —

Simplified process for direct nodule smelting

Heavy metal content of the final mineral product (wt. -%)

Zusatz der zweiten Reduktionsstufe	15% CaO	15% CaO+MgO	30% CaO	5% CaO	15% MgO
Werte in Gew%	21.11/2	22.11/1	22.11/2	23.11/1	23.11/2
Cr ₂ O ₃	<0,01	<0,01	0,01	<0,01	<0,01
CuO	<0,01	<0,01	<0,01	<0,01	<0,01
NiO	< <mark>0,01</mark>	<0,01	<0,01	<0,01	<0,01
PbO	0,03	0,03	0,03	0,04	0,03
V ₂ O ₅	<0,01	0,01	<0,01	<0,01	0,01

XRF analyses, RWTH Achen, Sommmerfeld, 2018

Summary

Summary

- SiO₂ flux of 10-15 wt% is sufficient to reach < 5 wt% Mn in Fe Metal
- SiO₂-CaO and Na₂B₄O₇ also show good results
- Metal-recovery rates > 95% for Ni, Co, Mo
- Mn-slag is suitable for FeMn production (Basicity adjustment required)
- >75 wt% Mn in metal, Si, Ti, Cu in some cases too high
- Final calcium-silicate slag is almost heavy metal free

Outlook

- Further look at Cu-reduction in first melting step →
 Kinetics
- Scale-up of entire process necessary

Thank you for your attention!

Federal Institute for Geosciences and Natural Resources (BGR) Dr. Thomas Kuhn www.bgr.bund.de IME Process Metallurgy and Metal Recycling RWTH Aachen University Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich <u>www.ime-aachen.de</u>

