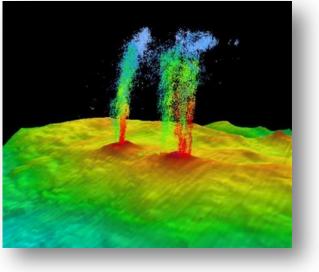
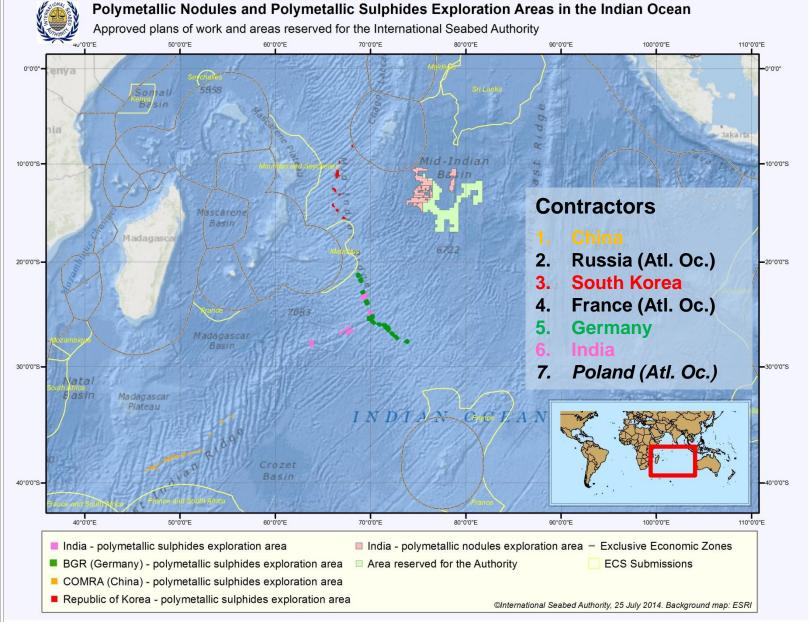

Current Status of the Polymetallic Sulfide Exploration and Environmental Investigations in the Western Indian Ocean

U. Schwarz-Schampera, <u>R. Freitag</u>, C. Kriete & INDEX-Team



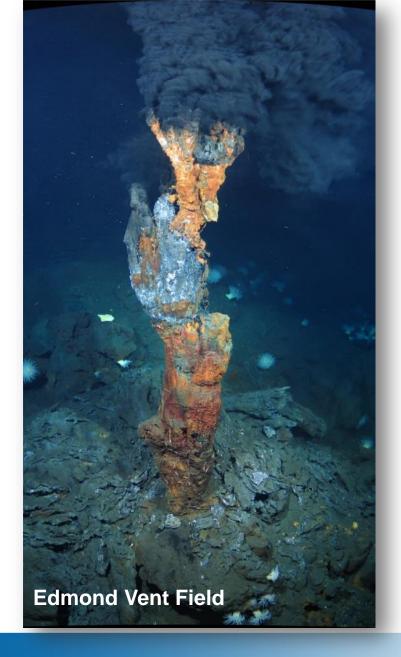
Bundesanstalt für Geowissenschaften und Rohstoffe

Exploration of Polymetallic Seafloor Massive Sulfides (SMS)



all alterna	203	30
	2029	
	2028	
	2027	
	2026	
and the second second	2025 - Reliquishment 25% of the	e area
	2024	
Contractory of the second	2023 – Relinquishment 50% of the area	
202	2	
2021		S. S
2020		
2019 INDEX2019,	TFS SONNE (BMBF)	
2018 INDEX2018, M/V P	ELAGIA (NIOZ) in preparation	
INDEX2017	✓	and the second
INDEX2016_1, INDEX2016_2	\checkmark	
Start: 05/2015 – INDEX2015 ✓		
		Still and
	:	Bundesanstalt für Geowissenschaften

GEOZENTRUM HANNOVER


und Rohstoffe

ISA Licenses in the Indian Ocean

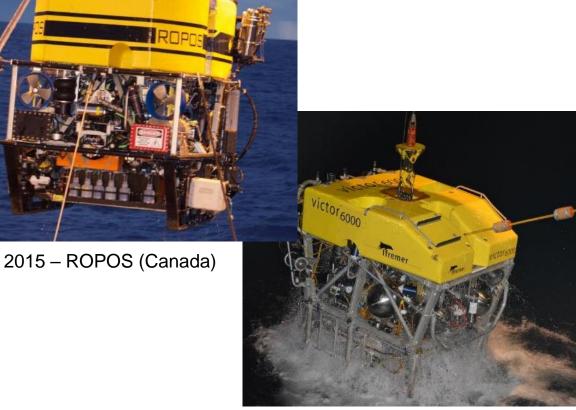
Bundesanstalt für Geowissenschaften und Rohstoffe

INDEX - Project Objectives

- Exploration target: Inactive SMS
- Locations, Dimensions and Metal Concentrations
- Identification of Economically Feasible
 Deposits (≥ 2,5 Mio. t)
- Environment: Biodiversity, Habitat
 Analysis, Mass Transfer, Water Column,
 Bottom Currents
- Conceptual Development of Mining Techniques
- Optimized Metallurgical Process

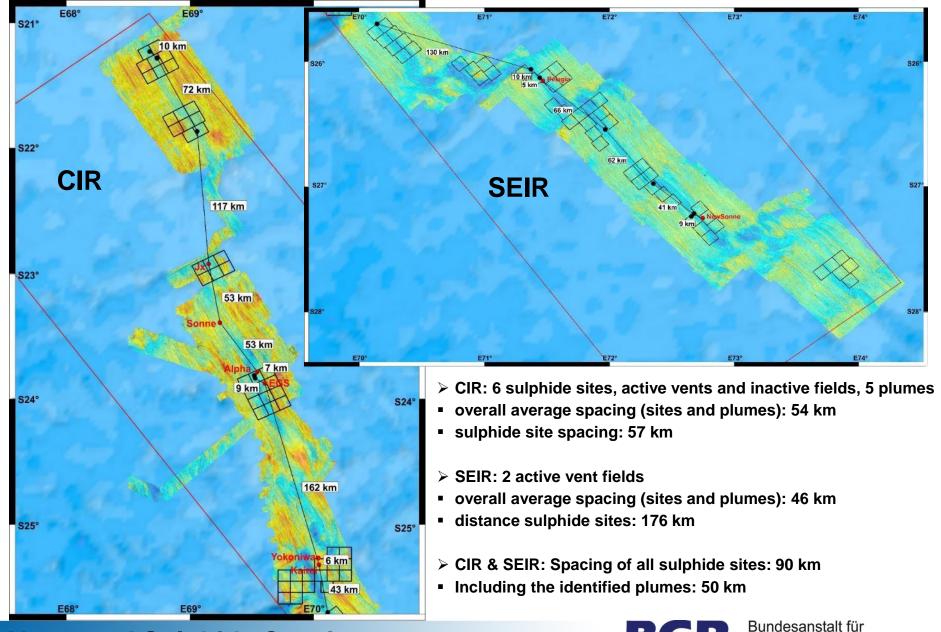
Bundesanstalt für Geowissenschaften und Rohstoffe

INDEX – Tools and Methods 1

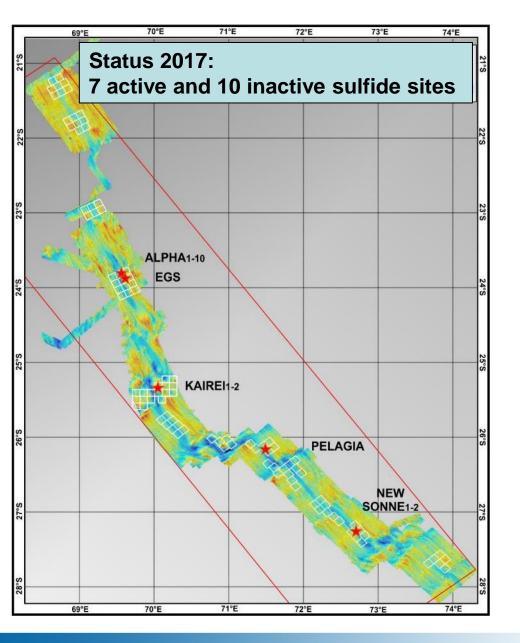


Bundesanstalt für Geowissenschaften und Rohstoffe

INDEX – Tools and Methods 2


2013 - KIEL 6000 (Germany)

2016 - VICTOR 6000 (France)


Bundesanstalt für Geowissenschaften und Rohstoffe

Vents and Sulphide Spacing

Geowissenschaften und Rohstoffe

1D-estimation of vent number

Total length of MOR segment: ~1000 km

Covered by License Area: ~360 km

Explored in License Area: ~200 km

Active sites discovered: 7

Estimated number of active sites in License Area: 12

Estimated number of active sites outside License Area: 22

Bundesanstalt für Geowissenschaften und Rohstoffe

Contents lists available at ScienceDirect

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeo

Review

Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights

ORE GEOLOGY REVIEWS

X

Edward T. Baker

Joint Institution for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/PMEL, Seattle, WA 98115, USA

ARTICLE INFO

Article history: Received 12 July 2016 Received in revised form 2 February 2017 Accepted 6 February 2017 Available online 9 February 2017

Keywords: Hydrothermal venting Diffuse flow Ocean ridges Faunal distribution Geochemical budgets Crustal circulation

ABSTRACT

Enumerating active hydrothermal fields on the seafloor has been a challenge since their discovery almost 40 years ago. High-temperature hydrothermal fields are readily discoverable, primarily by detecting mineral-laden plumes, but low-temperature, particle-poor vent fields resist discovery. Decades of exploration for vent fields have covered, though often cursorily, about one-third of the global lengths of both oceanic spreading ridges (OSRs) and volcanic arcs, identifying some 630 active vent fields. About 80% of these fields are on OSRs, and the spatial frequency of those fields is currently estimated as ~ 0.5 -5/100 km, generally increasing with spreading rate. Over the last decade, however, a few detailed surveys have added sensors capable of detecting ephemeral chemical tracers (oxidation-reduction potential) in addition to standard sensors that detect quasi-conservative optical tracers (such as light backscattering). This approach has revealed a new view of the distribution of venting fields along fast-spreading (>55 mm/yr) OSRs. Studies of four such ridge sections totaling 1470 km length suggest that the present inventory of vent fields may underestimate the true global population of vent fields on fast-spreading OSRs by a factor of 3–6. This increase implies that ridge axes are unexpectedly "leaky" reservoirs, from which hydrothermal fluids escape at far more sites than presently assumed; that the supply of dissolved hydrothermal iron, which may be fertilizing the primary production of the Southern Ocean, is higher than now calculated; and that present estimates of recoverable sulfide tonnage from ridge axes may be too low. Along slow-spreading ridges, which account for 60% of the global OSR length and 86% of known sulfide tonnage, expansive axial valleys present special exploration challenges that will not be easily overcome.

© 2017 Elsevier B.V. All rights reserved.

Global frequency of Active Vent Fields at MOR:

0.5 – 5 per 100 km

In German License Area:

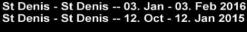
~ 2 per 100 km

Baker 2017, Ore Geology Reviews

Bundesanstalt für Geowissenschaften und Rohstoffe

Catalogue of INDEX Benthic Fauna

DNA confirmed taxa from the Edmond and Kairei vent fields 2015/ 2016



world of biodiversity

INDEX – Tree of Life

- Started in 2015
- Continuing to 2030
- 25.000 Individuals so far
- Published in GenBank (https://www.ncbi.nlm.nih.gov/genbank)

→ Fauna genetically related to Dodo (CIR) & Solitär (CIR)


Christodoulou, M.; Gerdes, K.; Kihara T.C.; Kniesz, K.

Bundesanstalt für Geowissenschaften und Rohstoffe

Decapod connectivity in the Indian Ocean deep-sea hydrothermal vents (2018)

Preliminary results

- High connectivity
- High haplotype diversity
- Population expansion

Bundesanstalt für Geowissenschaften und Rohstoffe

Reporting, Academia, Research, Media and ISA Affairs

- Annual Reports to ISA
- Symposia, Talks and Lectures for the Public and Universities
- Contracts to Universities and Research Centers
- PhD students 1+3
- Master / Bachelor Theses 3 / 10
- ISA Training Program 10 Trainees in Five Years

Expedition, Six Weeks of Lab Work and Marine Research Experience Ghana (2), Egypt (2), Nigeria, Argentina (2), Singapore, Cook Islands, Thailand

