Prospects for the development of polymetallic sulphides/seafloor massive sulfides in the ridges of the South Atlantic and Indian Oceans

Georgy Cherkashov Institute for Geology and Mineral Resources of the Ocean St Petersburg University St Petersburg, RUSSIA

> SENSITIZATION SEMINAR OF ISA SOUTH AFRICA 17 – 19 MARCH, 2015

# Outline

- Introduction
- Hydrothermal processes and seafloor massive sulfides (SMS): discovery and progress
- Global distribution & Geological setting of SMS
- Formation, Size & Morphology
- Metal Grades (e.g. rare-metals) & Resources
- Active & Inactive SMS: environmental issues
- Exploration methods & Exploitation approaches
- Conclusing remarks

#### Why go to the sea?



5







Mar 2015

Many Connections. One Focus.



### MARINE MINERALS: THE FUTURE OF SUPPLY

### EARTH'S HYPSOMETRIC CURVE



# 71% below Sea Level 60% below 2,000 m

The potential for commercial minerals per unit area in the oceans and seabed appear to be similar to that of the terrestrial lands.

Thus, almost <sup>2</sup>/<sub>3</sub> of the global mineral resources are in, or under, the sea and are virtually undeveloped.

### Exclusive economic zones (gray) and the Area (white)



Half of the global seabed minerals are now controlled by nations within the **Exclusive Economic Zones.** 

Another half is a "common heritage of mankind", is administered by ISA within the Area

## **MARINE MINERALS**

### In the EEZ (shallow water) SAND & GRAVEL (AGGREGATES) PLACERS (e.g. GOLD, DIAMONDS, TIN) PHOSPHORITES GAS HYDRATES

## In the Area & EEZ (deep water) Polymetallic NODULES Co-rich CRUSTS Seafloor Massive Sulfides (SMS)

## Characteristics of deep-sea minerals

| Type of<br>marine<br>minerals | Setting/<br>Depth, M                  | Main<br>metals                | Age,<br>years                             |
|-------------------------------|---------------------------------------|-------------------------------|-------------------------------------------|
| Nodules                       | Abissal plains<br>(4000-5000)         | Copper, nickel,<br>manganese  | n x 10 <sup>6</sup> - n x 10 <sup>7</sup> |
| Crusts                        | Seamounts<br>(1000-2500)              | Cobalt, nickel,<br>manganese  | n x 10 <sup>6</sup> - n x 10 <sup>7</sup> |
| Massive<br>sulfides           | Volcanic<br>structures<br>(1500-4000) | Copper, gold,<br>zinc, silver | n x 10º – n x 10 <sup>5</sup>             |

# Rare elements in marine minerals as potential bypoducts

|                     | Rare elements                       |
|---------------------|-------------------------------------|
| Nodules             | Co Li Mo REE Y Zr                   |
| Crusts              | Bi Mo Nb Pt REE Te Th Sc Ti W Yt Zr |
| Massive<br>sulfides | As Cd Ga Ge In Sb Se Te Mo Bi       |

### Rare metals in high- and green technologies

| Application areas                  | Rare metals in marine<br>minerals |
|------------------------------------|-----------------------------------|
| Cell phones, lasers                | REE, Ga, Co                       |
| Optical diods                      | Ga, As, In                        |
| Semiconductors                     | Ga, Ge, Bi, Co                    |
| Photovoltaic solar cells           | Ge, In, Se, Ga, Te                |
| Computer chips                     | Bi, Te, Ga                        |
| Fiber optic cables                 | Ga, Ge                            |
| Liquid crystal and plasma displays | REE, Ge, In                       |
| Wind turbines                      | REE, Co                           |
| Hybrid & electric cars batteries   | REE, Co                           |



### Wind Turbines

Two ton Nd-Fe-B magnets include 255 - 320 kg of neodymium Other rare-earth elements include: Dysprosium Praseodymium Samarium

> also contain significant Manganese Nickel Copper Cobalt Molybdenum Rhenium (very rare)

> > From Hein et al. (2013)

# Seafloor Massive Sulfides (SMS)

# Sampling of Black Smoker



De Ronde, 2011

Hydrothermal processes and seafloor massive sulfides: discovery and progress

### The Discovery of Black Smokers.

### 1978-79



Scientists explore rifts in the seafloor where hot springs spew minerals and startling life exists in a Strange World Without Sun

40,000 miles long. Man has seen with his landscape of black lava. own eyes scarcely forty miles of this Mid-Oceanic Ridge.

But along those few miles in the past six have seen: years, scientists in tiny submarines such as . Huge blood-red worms protruding from Alvin (above) have found, in those utterly forests of white plasticlike tubes (right). dark nether depths of the sea, animals and • Clams far larger than most shallow-water mineral factories unlike any seen before.

went out into the Pacific to study spreading by threads near fountains of warm water. where the thin, rigid plates that form the (650°F) or more-spewing black clouds of

CROSS THE BOTTOM of the four hard crust of our planet are pulling apart, oceans of the world runs the largest separating as much as eight inches a year. In feature on the face of this planet, a the cracks molten magma wells up, meets mountain range and rift system some cold seawater, and solidifies into a contorted

> In such regions the scientists have been witnessing the all but unbelievable. They

types, their meat scarlet with hemoglobin. In 1979 the latest in a series of expeditions • Strange dandelionlike creatures moored centers of the ocean floor. These are places . Plumes of even hotter water-350°C



1979: East Pacific Rise 21°N; water depth: 2600 m; exit temperature: 350°C Sensitization seminar of ISA South Africa

November 1979 17 – 19 March, 2015

# Global distribution & Geological setting of SMS

Global distribution of seafloor hydrothermal systems in the world ocean



- >350 known sites of hydrothermal activity
- 215 sites of polymetallic sulfide deposits
- 150 sites of high-temperature hydrothermal activity (black smokers)
- 59% at mid-ocean ridges (55,000 km)
- 25% in back-arc environments (22,000 km)
- 15% on submarine volcanic arcs
- <1% on intraplate volcanoes</li>



415°C, Turtle Pits

## Water depth distribution of the SMS



Hannington et al., 2006

### Geological setting of the SMS (Updated from Fouquet, IFREMER, 1998, 2002)



# Formation, Size & Morphology

# Formation of the oceanic hydrothermal system



SPC (2013). *Deep Sea Minerals: Sea-Floor Massive Sulphides, a physical, biological, environmental, and technical review. Baker, E., and Beaudoin,* Y. (Eds.) Vol. 1A, Secretariat of the Pacific Community

### «Black smokers»

Hot(>350°C) metal-rich fluid discharging at the seabottom





## Seafloor Massive Sulfides (SMS) on the surface (typical)



(from Hannington, Petersen et al., 1995)

## Active Mound, TAG field



### Development of SMS mounds on the seafloor



Sensitization seminar of ISA South Africa 17 – 19 March, 2015

#### www.nautilusminerals.com

# Solwara 1 SMS deposit topographical model – red shading denotes the recovery areas



Sensitization seminar of ISA South Africa 17 – 19 March, 2015

#### www.nautilusminerals.com

# «Coalesced mounds with apron of disintegrated ore material»



### SMS composition

Vertical section through a small copper- and zinc-rich high temperature chimney. (Y.Fouquet, IFREMER)



# Sample of SMS (700 kg)



### Fragment of Cu-sulfide chimney onboard



# Metal Grades (e.g. rare-metals) & Resources



#### Metal concentrations in SMS related to the mean value in the Earth crust

## Metals of economic interest in SMS

• Major

Cu, Zn, Pb, Au, Ag, (Co)

• Rare (byproducts)

Cd, Se, Ge, Ga, Mo, Te, In

# Copper grade comparisons of SMS (Solwara 1) with onshore projects



Courtesy of Craig Miller, TD Securities, Mar 2010, Nautilus Minerals NI 43-101 resource

**Russian licensed area at** the Mid-Atlantic Ridge •Logatchev, 1994 • Puy des Folles, 1997, 2008 • Krasnov, 2004, 2006 • Zenith – Victory, 2008, 2010 • Peterburgskoe, 2010 • Jubilee, 2012

• <u>Surprise</u>, 2012



### Major metals concentration in MAR SMS

|           | Ashadze-1 | Ashadze-2 | Logatchev-1 | Logatchev-2 | Krasnov | Semyenov | Puy des |
|-----------|-----------|-----------|-------------|-------------|---------|----------|---------|
|           | (U/B)     | (U/B)     | (U/B)       | (U/B)       | (B)     | (U/B&B)  | Folles  |
|           |           |           |             |             |         |          | (B)     |
| Fe %      | 27.86     | 32.08     | 21.80       | 18.00       | 41.01   | 34.30    | 31.02   |
| Cu %      | 10.52     | 17.70     | 33.19       | 22.40       | 1.74    | 2.48     | 13.07   |
| Zn %      | 17.64     | 0.83      | 4.30        | 16.00       | 0.69    | 2.39     | 2.41    |
| Au<br>ppm | 3.5       | 11.1      | 14.0        | 43.0        | 0.76    | 3.6      | 0.23    |
| Ag<br>ppm | 87.7      | 7.8       | 56.0        | 4.2         | 26.0    | 53.3     | 27.5    |
| Co<br>ppm | 1975      | 1148      | 539         | 90          | 488     | 285      | 845     |
| Ni<br>ppm | 163       | 22        | 75          | 90          | 2       | 21       | b.l.    |
| N         | 97        | 51        | 124         | 9           | 144     | 21       | 19      |

U/B – ultrabasic hosted SMS; B – basalt hosted SMS



SPC (2013). *Deep Sea Minerals: Sea-Floor Massive Sulphides, a physical, biological, environmental, and technical review. Baker, E., and Beaudoin,* Y. (Eds.) Vol. 1A, Secretariat of the Pacific Community

### Geochemistry of massive sulphides in various tectonic settings



Figure 5. Concentrations of copper, zinc, and lead in sea-floor massive sulphides formed in different geological settings (Source: GEOMAR)

SPC (2013). *Deep Sea Minerals: Sea-Floor Massive Sulphides, a physical, biological, environmental, and technical review. Baker, E., and Beaudoin,* Y. (Eds.) Vol. 1A, Secretariat of the Pacific Community

## Resources

- Estimates of single SMS deposit range from n x 10<sup>3</sup> tonnes to n x 10<sup>6</sup> tonnes ore masses. This is comparable with onshore massive VMS deposits.
- Estimates of the oceanwide metal potential of seafloor hydrothermal systems range from 530 x 10<sup>9</sup> tonnes Cu+Zn (Cathles, 2011) to 3 x 10<sup>9</sup> tonnes Cu+Zn (Hannington et al., 2010).

# Parameters of the massive sulfide deposits (northern equatorial MAR)

| Deposit                                        | Latitude  | Water depth | Estimated size parameters of deposit |                |                              |  |
|------------------------------------------------|-----------|-------------|--------------------------------------|----------------|------------------------------|--|
| (A – active<br>I – inactive)                   | (N)       | (meters)    | Square<br>km <sup>2</sup>            | Thickness<br>m | Est.resources<br>mln. tonnes |  |
| Ashadze-1 (A)                                  | 12° 58.5' | 4200        | 0.058                                | 10             | 1.74                         |  |
| Ashadze-2 (A)                                  | 12° 59.5' | 3250        | 0.106                                | 20             | 5.70                         |  |
| 13° 20' N (I)                                  | 13° 20'   | 2600        | 0.110                                | ?              | ?                            |  |
| <u>Semyenov (I/A)</u>                          | 13° 31'   | 2400-2600   |                                      | 5              | <u>42.00</u>                 |  |
| Logatchev-1 (A)                                | 14° 45'   | 3100        | 0.032                                | 15             | 1.75                         |  |
| Logatchev-2 (A)                                | 14° 43'   | 2720        | 0.007                                | 10             | 0.25                         |  |
| <u>Krasnov (I)</u>                             | 16° 38'   | 3700-3750   | 0.161                                | 25             | <u>13.95</u>                 |  |
| <u>Zenith-Victoria (I)</u>                     | 20° 08'   | 2370-2390   | 0.495                                | 8              | <u>11.00</u>                 |  |
| <u>Puy des Folles (?)</u>                      | 20°30.5'  | 1940 - 2000 | 0.858                                | 4              | <u>10.00</u>                 |  |
| TAG (ActiveMound)<br>(Hannington et al., 1998) | 26° 08'   | 3670        | 0.031                                | 40-50          | 4.0                          |  |
| Solwara-1<br>(www.nautilusminerals.com)        |           | 1200        |                                      | < 20           | 1.2                          |  |

Active & Inactive SMS: environmental issues

Principal types of SMS
by geological setting:
on the surface of seafloor (mostly)
subseafloor (proposed)

 by association with hydrothermal activity:

active

• inactive (preferential)

## Active hydrothermal site



## Active site



Photo courtesy of Chuck Risher.

### Hydrothermal community at the active site



## Inactive chimney



## Oxidized SMS at the inactive site

![](_page_50_Picture_1.jpeg)

Exploration methods & Exploitation approaches

![](_page_52_Picture_0.jpeg)

Exploration studies for SMS deposits

Sensitization seminar of ISA South Africa 17 – 19 March, 2015

SUB

Grab

Sonar

Dredg

Rift 3 (EM)

TV Grab

![](_page_53_Figure_0.jpeg)

### Seafloor Production: what is it?

![](_page_54_Picture_1.jpeg)

a

![](_page_54_Picture_2.jpeg)

Using existing technology from the offshore oil and gas sector, combined with rock cutting and materials handling technologies used in land-based operations

- Production Support Vessel
  - Operational base. Power supply and dewatering plant
- Riser and Lifting System
  - Pumps material to the surface
- Seafloor Production Tools
  - Three remotely operated machines, cutting and collecting material

Many Connections. One Focus.

O Nautilus Minerais 2015

Mar 2015

# Seafloor Production Tools (all being commissioned)

![](_page_55_Picture_1.jpeg)

![](_page_55_Picture_2.jpeg)

![](_page_55_Picture_3.jpeg)

| Auxiliary Cutter |           |
|------------------|-----------|
| Length:          | 15.8 m    |
| Width:           | 6.0 m     |
| Height:          | 7.6 m     |
| Boom swing:      | 11.6 m    |
| Boom cutting:    | +4 -1.0 m |
| Weight:          | 250 Te    |

| 14.2 m    |
|-----------|
| 4.2 m     |
| 6.8 m     |
| 4.2 m     |
| +4 -0.5 m |
| 310 Te    |
|           |

![](_page_55_Picture_6.jpeg)

| Collecting Machine         |           |
|----------------------------|-----------|
| Length:                    | 16.5 m    |
| Width:                     | 6.0 m     |
| Height                     | 7.6 m     |
| Collection Range - height: | -2 m +6 m |
| Collection Range - Width:  | ± 4 m     |
| Weight:                    | 200 Te    |

![](_page_55_Picture_8.jpeg)

![](_page_55_Picture_9.jpeg)

![](_page_55_Picture_10.jpeg)

Many Connections. One Focus.

© Nautilus Minerais 2015

Mar 2015

-14

### Current status of Seafloor Equipment build

![](_page_56_Picture_1.jpeg)

- Seafloor Production Tools (SPTs)
  - BC, CM and AC undergoing commissioning
  - Delivery expected by Q4 2015
  - Extensive wet testing planned 2016
- Riser and Ancillary Equipment
  - >50% complete with delivery expected by Q4 2015
- Pump
  - > 50% complete with delivery expected by mid 2016

![](_page_56_Picture_10.jpeg)

Many Connections. One Focus.

O Nautilus Minerais 2015

16

### **Timeline to Production**

![](_page_57_Picture_1.jpeg)

20

![](_page_57_Figure_2.jpeg)

distribution of seafloor hydrothermal systems in the world ocean

![](_page_58_Figure_1.jpeg)

Peteresen, 2013

**Russian licensed area at** the Mid-Atlantic Ridge •Logatchev, 1994 • Puy des Folles, 1997, 2008 • Krasnov, 2004, 2006 • Zenith – Victory, 2008, 2010 • Peterburgskoe, 2010 • Jubilee, 2012

• <u>Surprise</u>, 2012

![](_page_59_Figure_2.jpeg)

Distribution of seafloor hydrothermal systems in South Atlantic and Indian ocean

![](_page_60_Picture_1.jpeg)

![](_page_61_Picture_0.jpeg)

![](_page_61_Picture_1.jpeg)

![](_page_61_Picture_2.jpeg)

Images of hydrothermal activity in the Central Indian Ocean (source WHOI)

### Exclusive economic zones & application areas

![](_page_62_Figure_1.jpeg)

| Contractor/Applicant     | Nodules        | Crusts   | Massive Sulfides |
|--------------------------|----------------|----------|------------------|
| China, COMRA             | 2001, 2015 (A) | 2014     | 2011             |
| Russia, YMG, MNR         | 2001           | 2015     | 2012             |
| Japan, DORD, JOGMEC      | 2001           | 2014     |                  |
| India,                   | 2001           |          | 2013 (A)         |
| France, IFREMER          | 2001           |          | 2014             |
| Korea, KIOST             | 2001           |          | 2014             |
| InterOceanMetal          | 2001           |          |                  |
| Germany, BGR             | 2006           |          | 2013 (A)         |
| United Kingdom, UKSRL    | 2013 (A)       |          |                  |
| Belgium, GSR             | 2013           |          |                  |
| Tonga, TOML              | 2012           |          |                  |
| Kiribati, MARAWA         | 2015           |          |                  |
| Nauru, NORI              | 2011           |          |                  |
| Cook Island, CIIC        | 2014 (A)       |          |                  |
| Singapore, Ocean Mineral | 2015           |          |                  |
| Brasil, CPRM             |                | 2014 (A) |                  |

# **Concluding remarks**

- Seafloor massive sulfides (SMS) have been discovered later and studied less than the two other main types of marine minerals - ferromanganese nodules and crusts.
- Nevertheless, the data available indicates that SMS are characterized by highly significant (higher than on land) grades of major and rare metals used in high-tech and green technologies.
- Available exploration methods are sufficiently efficient for prospecting SMS deposits
- Due to limited data available resource estimates of SMS have a wide range and could be revised after further exploration studies.
- Feasibility of cost-effective production of SMS has been elaborated not for the Area, but for the exclusive economic zones (EEZ) of the island States in South-West Pacific
- The first commercial mining of SMS is expected in the EEZ (2018?). Development of the mining production systems is close to completion.

# **Concluding remarks**

- ISA effectively administers activities related to the SMS exploration.
- ISA pays particular attention to the environmental aspects of mineral exploration and to the training of specialists from developing countries.
- The interest in this type of marine minerals is growing. In less than four years after the adoption of the Regulations, four contracts for SMS exploration in the Atlantic and Indian oceans have already been signed, and two new applications approved by ISA Council.
- New areas for SMS application is still available in the Atlantic and Indian oceans