Metallurgical Model Presentation

Maximizing metallurgical yields at minimal environmental cost

Processing Technologies, Metal Recoveries & Economic Feasibility of Deep Sea Mining Monday, September 3 – Wednesday, September 5 Ministry of Environment, Warsaw, Poland Simon Boel, GSR NV.

1. Base thought

- Mining transport processing should have lower impact than landbased alternatives
- Leading to an environmental impact optimisation E.g The use of an environmental cost curve

2. Applied on nodule processing

- CO₂ impact (energy use)
- Toxicity reagents
- Waste produced
- Efficiency of process / irrevocable loss of metals

3. Choice of metallurgical route

- 1. Cuprion + EMM process description
- 2. Overview energy & reagentia impact
- 3. Waste

and CO₂

Reactor

Selective picking of metals from poly-metallic inflow

- Physical breakdown
- Chemical breakdown

 $MnO_{2(s)} + CO_{(g)} \rightarrow MnCO_{3(aq)}$ Ni, Cu, Co: liberated from crystal structure Other trace elements

• Recovery of trace metals (SX/EW)

Organic acid: selective binding of Ni and Cu Stripping: H_2SO_4 / recovery R $R_2Cu_{org} + H_2SO_4 \rightarrow 2R-H_{org} + CuSO_4$ (aq) EW \rightarrow Ni metal & Cu metal $Cu^{2+} + 2^{e-} \rightarrow Cu$ Remaining: Mn, Co, trace elements

CUPRION PROCESS

• Recovery of Co

 Co^{2+} + impurities_(aq) + H₂S → $CoS_{(s)} \downarrow$ $CoS + H_2SO_4 \rightarrow CoSO_{4 (aq)}$ EW → Co metal Remaining: MnCO₃ (major fraction!) & trace elements

CUPRION PROCESS

3.1. Cuprion + EMM – EMM substitution

• Mass balance

Bulk of inflow: waste stockpile / low-grade.product (MnCO₃: 6-7 USD/DMTU)

Need for further processing of MnCO₃

• EMM: high value, known process

- EW→ Electrolytic Manganese Metal (EMM)
- At 3 Mtpa nodules: 729 000 t EMM
- Marketing strategy required
- Annual EMM market: 1 400 000 t EMM

3.1. Cuprion + EMM – Processing of $MnCO_3$

• Substitution theory

- Selling EMM into other Mn markets
- Thereby avoiding disruption of Mn prices

• Energy use

	kWh / tonne metal		kWh / ton	Reference		
Nickel electrowinning	3,000	4,000	40	50	1 - 2 - 10	
Copper electrowinning	2,000	3,000	20	30	1 - 2	
Cobalt electrowinning	3,000	4,500	5	8	3 - 4 - 10	
EMM electrowinning	10,000		40		1 - 5 - 10	
Auxiliary processes	Х		40	80	1 - 2	
Total	х		145	208		

Electricity consumption Cuprion + EMM Process

Impact of electricity generation

• Impact of energy use

	Impa	ct of electricit	y generation			
	Coal	Oil & Gas	Renewable	Nuclear	Overall (kg CO2/kWh)	Reference
CO2 emissions generation (kg CO2/kWh)	1.1	0.35	0.025	0.115	-	6
Generation distribution Canada	10%	10%	65%	15%	0.17	7
Generation distribution Mexico	10%	70%	20%	0%	0.35	8
Generation distribtution China	65%	5%	25%	5%	0.71	9

Electricity impact Cuprion + EMM Process

	kg CO2/tonne nodu		
Processing in Canada	25	36	
Processing in Mexico	51	73	
Processing in China	103	148	

1 kg CO2 emitted = driving 10 km by car

Impact of electricity generation

• Impact of energy use

	Impac	ct of electricit	y generation			
	Coal	Oil & Gas	Renewable	Nuclear	Overall (kg CO2/kWh)	Reference
CO2 emissions generation (kg CO2/kWh)	1.1	0.35	0.025	0.115	-	6
Generation distribution Canada	10%	10%	65%	15%	0.17	7
Generation distribution Mexico	10%	70%	20%	0%	0.35	8
Generation distribtution China	65%	5%	25%	5%	0.71	9

Electricity impact Cuprion + EMM Process

	kg CO2/tonne nodules		
Processing in Canada	25	36	
(Processing in Mexico)	51	73	
Processing in China	103	148	

Relatively easy
optimisation by relocation

1 kg CO2 emitted = driving 10 km by car

• Consumption of main reagents

Main reagentia consumption Cuprion + EMM Process					
	kg / tonne	kg / tonne nodules			
NH3	90	100	2 - 5		
CaO	12	13	2		
H2SO4	240	550	2 - 5 - 11		
СО	14	18	stoichiometry		
Steam	500 1 - 2				

Main reasonation constinue of FNAM Draces

Cross-checked with atmospheric sulphuric acid leaching of limonitic laterite ore

• Impact of reagents consumption

Impact of main reagentia Cuprion + EMM Process					
	kg CO2 / kg reagens	Reference			
NH3	2.1	12 - 13 - 14			
CaO	1.2	13 - 14			
H2SO4	0.14	13 - 14			
СО	1.57	stoichiometry			
Steam	0.61				

Impact of main reagentia consumption Cuprion + EMM Process

	kg CO2 / tonne nodules			
NH3	189	210		
CaO	14	14		
H2SO4	34	77		
СО	23	33		
Steam	30	05		
Total	774	839		

• Impact of reagents consumption

• Impact of transport

• Overall impact

- Main driver: chemical reagents defined by laws of nature
- Secondary driver: electricity CO₂ optimization by choice of location
- Transport: small impact longer routes justified by greener electricity
- Conservative figures

	Transport impact	Cuprion + EMM				Processing impact		Mining shin to Metal	
		Electricity impact		Main reagentia impact		Trocessing impace			
	kg CO2 / tonne nodules	kg CO2 / tonne nodules kg CO2 / tonne nodules		kg CO2 / tonne nodules		kg CO2 / tonne nodules			
Destination: Canada	21	25	36	774	839	799	875	820	895
Destination: Mexico	12	51	73	774	839	825	912	837	924
Destination: China	57	103	148	774	839	877	987	934	1044

Impact of chain "Mining ship to Metal"

- Discussion / outstanding issues
 - Consumption of minor reagents
 - Consumption steam: Dames & Moore (1977): 1600 kg / tonne nodules CO₂ !

3.3. Waste

• Major metals recovered

- Very little amounts
- Closed loop process
- Possibility of Mo recovery

• Efficient process

• Very high recovery rate of metals

4. Alternative routes (Blue Nodules)

- EU Horizon 2020 programme
- RWTH Aachen: pyrometallurgical route
- Under examination
- <u>www.blue-nodules.eu</u>

Questions?

Thank you

Bibliography

1	Dames and Moore. (1977). Description of Manganese Nodule Processing Activities for Environmental Studies.
2	Monoz Royo Carlos. (2018). MIT Cost Model. Presented at ISA Contractor's Workshop.
3	Lu, Jianming & Dreisinger, David & Glück, Thomas. (2013). Boleo Cobalt Electrowinning Development.
4	Sadoway, Donald R. (1986). "Electrometallurgy," Encyclopedia of Materials Science and Engineering.
5	L'Huillier, Patrice. (2015). Construction and Commissioning of ERAMET SiMn + EMM Plant in Gabon
6	https://timeforchange.org/co2-emission-nuclear-power-stations-electricity
7	https://www.nrcan.gc.ca/energy/electricity-infrastructure/about-electricity/7359
8	https://www.statista.com/statistics/763072/electricity-generate-source-mexico/
9	https://chinaenergyportal.org/en/2016-detailed-electricity-statistics-updated/
10	USGS. (2011). Estimates of Electricity Requirements for the Recovery of Mineral Commodities, with Examples Applied to Sub-Saharan Africa
11	Crundwell et al. (2011). Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals
12	https://ammoniaindustry.com/ammonia-production-causes-1-percent-of-total-global-ghg-emissions/
13	Bosch, Peter & Kuenen, Jeroen. (2009). Greenhouse gas efficiency of industrial activities in EU and non-EU.
14	International Sustainability & Carbon Certification. (2011). GHG Emissions Calculation Methodology and GHG Audit.
15	Van Nijen, Kris. (2018). A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the Clarion Clipperton Fracture Zone
16	ECTA. (2011). Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations