

Hydrothermal venting at tectonic plate boundaries

Hydrothermal vents - energy oases for specialized ecosystems

Specialised animals and microbes colonise seafloor vents

H₂S in hydrothermal fluids provides energy for *chemosynthesis* of new organic matter

- > High biomass
- > Rapid growth
- Low animal diversity
- > High microbial diversity

The tubeworm symbiosis

$$HS^{-} + 2O_{2} = SO_{4}^{-2}$$
Energy

 $CO_2 + R = organic molecules$

Giant tube worms have no mouth or digestive system - entirely dependent on symbionts for food

700+ known hydrothermal vent species

Impact of mining on hydrothermal vent ecosystems

Images from Nautilus Minerals

Mineral deposits are habitats for vent organisms

Effects of mining Return water Far West Solwara 1 Direct physical **Extinction of local** damage to habitat populations

Effects of mining – also depend on

Geographic range of affected species

Uniqueness of local gene pool

Mitigative measures - Reserve Areas

- Larvae can recolonize disturbed sites
- Nautilus nearby reserve and sequential mineral extraction beginning mid-deposit and working downstream

Genetic resources at hydrothermal vents

- Small number of animal species
- High, unquantified diversity of microbes
- Large degree of genetic novelty
 - Growth at high temperatures
 - Resistance to heavy metals
 - Unusual symbioses

Biodiversity in the world ocean

Census of Marine Life (CoML)

- 10-year program (2000-2010) involving 80 nations
- Network of separate programs (seamounts, Antarctic, marine mammals, chemosynthetic ecosystems, etc)

Catalogued 246,000 species

Genetic Resources in the Deep Sea - The Promise

"... a source of new and viable wealth creation"*

^{*} National strategy on marine bioprospecting, Norway, 2009

Bioprospecting in the deep sea - The Reality

^{*} Nature (1998) 392, 535

Drug discovery and development from natural products

Marine Genetic Resource Patents

Patents filed (total = 135)

Marine genetic resource patents 1973 - 2007

% Patents by category

Novel marine compounds grouped by phyla

Novel marine compounds in coastal waters

Drugs of marine origin currently in clinical trials (2006)

Drug/Compound	Source	Dhyle	Current Supply	Phase of Clinical Trials	Therapeutic Activity
	Organism	Phyla	source		
Prialt (ziconitide, ω-conotoxin MVIIA)	Conus magus	Mollusc	Synthetic	III	Pain
Bryostatin 1	Bugula neritina	Bryozoan	Wild harvest take (82)	II	Anticancer
Yondelis (ecteinascidin 743)	Ecteinascidia turbinata	Urochordate	Semi-synthesis	III	Anticancer
Aplidin (aplidine)	Aplidium albicans	Urochordate	Synthetic	II	Anticancer
Kahalalide F	Elysia rufescens/Bryopsis sp.	Mollusc/Green Algae	Synthetic	II	Anticancer
Squalamine	Squalus acanthias	Chordate	Synthetic	II	Anticancer
KRN7000 (agelasphin derivative)	Agelas mauritianus	Sponge	Synthetic	1	Anticancer
Neovastat (Æ-941)	Various "shark" species	Chordate	Wild harvest take	11/111	Anticancer
HTI-286 (hemiasterlin derivative)	Cymbastella sp.	Sponge	Synthetic	II	Anticancer
Discodermolide	Discodermia dissoluta	Sponge	Synthetic	1	Anticancer
E7389 (halichondrin B derivative)	Lissodendoryx sp.	Sponge	Synthetic	1	Anticancer
ES-285 (spisulosine)	Spisula polynyma	Mollusc	Wild harvest take (83)	1	Anticancer
NVP-LAQ284 (psammaplin A derivative)	Psammaplysilla sp.	Sponge	Synthetic	1	Anticancer
ILX651 (synthatodin, dolastin 15 derivative)	Dolabella auricularia	Mollusc	Synthetic	1/11	Anticancer
Cematodin (dolastatin 10 derivative)	Dolabella auricularia	Mollusc	Synthetic	1/11	Anticancer
TZT-1027 (dolastatin 10 derivative)	Dolabella auricularia	Mollusc	Synthetic	II	Anticancer
IPL-576,092 (contignasterol derative)	Petrosia contignata	Sponge	Synthetic	II	Antiasthmatic
IPL-512,602 (IPL-576092 derivative)	Petrosia contignata	Sponge	Synthetic	II	Antiasthmatic
IPL-550,260 (IPL-576092 derivative)	Petrosia contignata	Sponge	Synthetic	1	Antiasthmatic
GTS-21 (anabasine derivative)	Pseudopterogorgia elisabethae		Synthetic	1	Alzheimer's/
	, 5 0				Schizophrenia
CGX-1160 (contulakin G)	Conus geographus	Mollusc	Synthetic	1	Pain

Yondelis® (trabectedin)

- Marine derived anti-tumoral agent discovered in the colonial tunicate *Ecteinascidia turbinata* and now produced synthetically by PharmaMar.

- Currently approved for treatment of ovarian

cancer in 57 countries

Ecteinascidia turbinata

Genetic Resources at Vents – The Promise

Extreme Enzymes

Polymerase enzymes

(taq, Deep Vent_R, Pfu)

DNA
DNA
DNA
DNA

Polymerase chain reaction(PCR)

- DNA fingerprinting
- Genome mapping

Vent microbe polymerase = 30% of \$500M annual global market

Genetic Resources at vents - the promise cont'd

Novel biomolecules

Artificial human blood from marine worms– a promising spin-off from vent research

Blood transfusion problems

Bacteria

The most transfused infectious agent

ABO & Rh System

1 3000 accidents

Known Pathogenes

The tests only detect 5 pathogens

Limit of the tests

The pullagen incubation period could inclean fy false negatif

[White book, 2005]

Infectious disease

HIV (1/3500000), hepatite B (1/650000), hepatite C(1/3000000)

New and emergent pathogens

A risk that we cannot detect (prions, SRAS, Nil virus,)

Leucocytes

The residuals lymphocytes and cytokins provock dramatic post-transfusional reactions

Insufficient amount of oxygen carriers available
Shortage estimated to be 100 million liters / year worldwide
[Winslow et al, 2000]

Artificial human blood from marine worms

Human blood

- Nutrient/ waste transport
- Immune system
- Gas (O₂/CO₂) transport

- Research began in French laboratory (CNRS-Roscoff) as study of blood from giant vent tubeworm
- Lab developed expertise in study of haemoglobin from marine invertebrates
- Connected with biomennology industry

Manufacturing of HbAm

EcoRI

Using animals produced under GMP- like conditions

Thawing

Purification by precipitation, filtration, diafiltration/ultrafiltration and a sterilisation GMP batches

> Control of each bactch: FPLC, HPLC-MS, Functionality, Cytotoxicity

HEMARINA Pre-clinical test on mice -Toxicity-

Is HbAm Toxic?

• Mice partially transfused (50 à 25 %) with HbAm

→

Control

1 Administration

— 2 Administrations

HbAm is not toxic

Marine Scientific Research - a major stakeholder at hydrothermal vents

Public education – learning how the Earth works

Endeavour Hydrothermal Vents Marine Protected Area – a reserve for scientific research

Monitoring Endeavour vents - NEPTUNE Canada cabled observatory

