

Exploration and Mine Site Model Applied to Seamount Lease-Block Selection for Cobalt-Rich Crusts

> James R. Hein U.S. Geological Survey For the ISA

Copyright 2004 Monterey Bay Aquarium Research Institute Tiburon/2004/122/04_49_36_12.rgb (MAIN) Sat May 1 19:37:36 2004 GMT (local +7) [cruise.pillow-lava-1]

Introduction

Parameters that ultimately will be used to define an exploration area and mine site are unknown

Reasonable assumptions are used to bracket likely characteristics

A set of conditions is selected based on present state-of-knowledge of seamount morphology and size, and distribution of cobalt-rich crusts

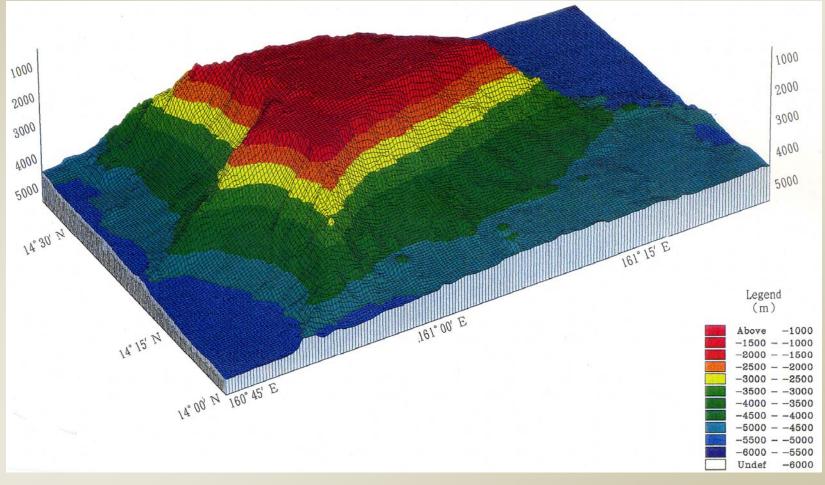
Rationale for seamount selection

parameters

- Mining operations will take place around the summit region of guyots on flat or shallowly inclined surfaces: summit platforms, terraces, and saddles
 - These are the areas with the thickest and most cobalt-rich crusts
 - Much thinner crusts occur on steep slopes
 - Conical seamounts are too small, with rugged summits
- Seamount summits will not be much deeper than about 2200 m; terraces will not be deeper than about 2500 m
 - Slopes are more rugged below 2500 m
 - Crusts are thinner below 2500 m
 - The contents of Co, Ni, Cu, etc. in crusts are less below 2500 m
- Little or no sediment will occur on the summit platform, therefore, a region of strong and persistent bottom currents

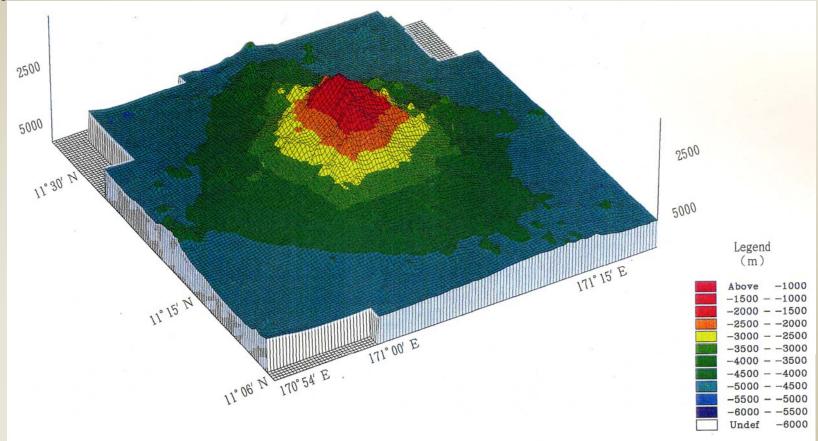
Rationale (continued)

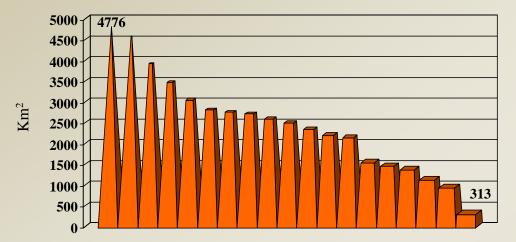
- The summit region above 2500 m will be large, more than 400 km²
 Yields fewest seamounts needed to be mined
- The submarine flanks of islands and atolls will not be considered for mining
- Clusters of large seamounts will be favoured
- The seamounts will be old, of Cretaceous age
 Crust thickness, slope stability, guyots with large summit areas
- Seamounts with thick crusts and high grades (Co, Ni, Cu, etc.)
- The central Pacific best fulfills all these criteria


Area calculation details

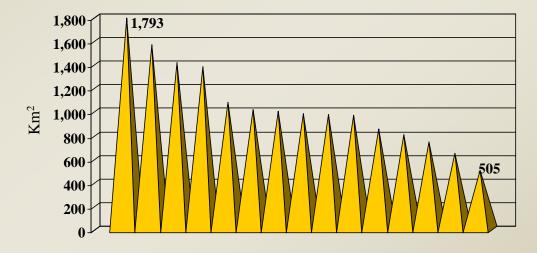
- Surface area of 34 typical seamounts calculated
- ArcMap's 3-D analyst used for area calculations
- Sediment vs. hard-rock calculated from side-scan sonar back-scatter images

56 kilometers long Terraces: smooth and rough Large area above 2500 m Debris apron

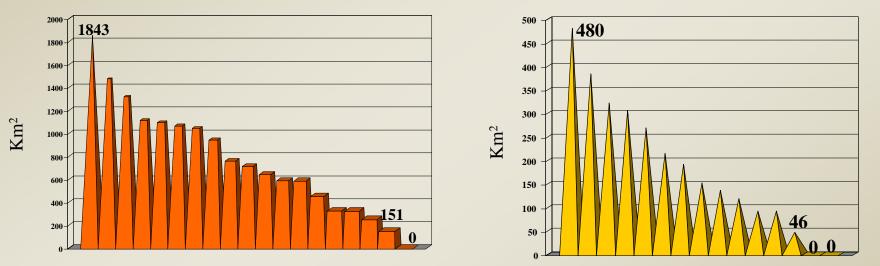

Typical Guyot


Typical Conical Seamount

14° slopes Small area above 2,500 m Rugged summit


Total surface area of 19 Central Pacific Guyots

Total surface area of 34 seamounts: 62,250 km² Geographic area hosting 34 seamounts: 506,000 km²


25 km²/yr mining area 500 km²/20 yrs mining site 2,500 km² for exploration for mine sites

Total Surface Area of 15 Central Pacific Conical Seamounts

Total Surface Area of 19 Guyots above 2500 m water depth Total Surface Area of 15 Conical Seamounts above 2500 m water depth

Total surface area of 34 seamounts above 2500 m: 17,470 km²

25 km²/yr mining area 500 km²/20 yrs mining site 2,500 km² for exploration for mine sites

Average Seamount

(Surface Area Statistics for 34 Seamounts)

	Total Currence Area (1002)	Surface Area above 2500m	
	Total Surface Area (km²)	water depth (km ²)	
Mean	1,850	515	
Median	1,450	325	
SD ¹	1,150	470	
Minimum	310	0	
Maximum	4,775	1,843	

¹Standard Deviation

25 km²/yr mining area 500 km²/20 yrs mining area 2,500 km² for exploration for mine sites Copyright 2004 Monterey Bay Aquarium Research Institute Tiburon/2004/123/00_03_51_19.rgb (MAIN) Sun May 2 14:40:04 2004 GMT (local +7) [cruise,porifera-1]

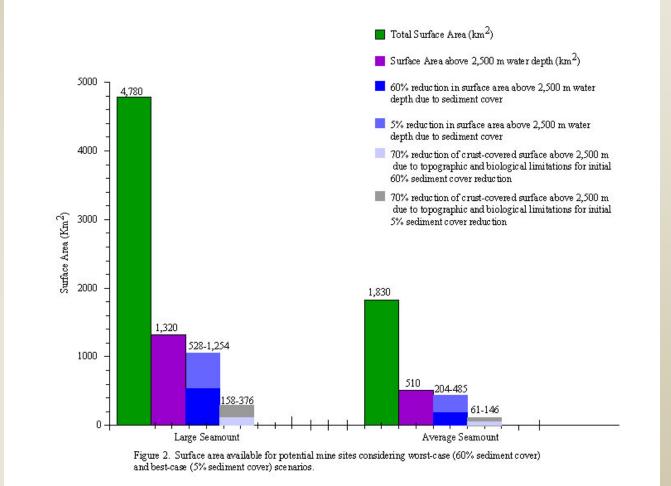
Actual surface area to be mined limited by:

Crust exposure/sediment cover
 Varies from nearly 0% to nearly 100%
 Cut-off of 60% sediment cover, seamount size dependent
 Worst case scenario: 60% reduction leaves 528 km² for largest seamount in data set (1,254 km²)

5% cover)

diments to mining

Other Impediments to Mining


 Prohibitive smallscale topography
 Biological corridors

- Unforeseen
 impediments
- Up to 70% further reduction in mining area

Worst case scenario: 70% reduction leaves 158 square kilometers available for the largest seamount in data set (376 square kilometers for 5% sediment cover)

Reduction in Mineable Area

Crust thickness and square meter tonnage

- Worst case: mean crust thickness of 2 cm = 39 kg/m² wet weight (density 1.95 g/cm³)
- Best case: mean crust thickness of 6 cm = 117 kg/m²
- Model mine site: 2.5 cm <u>net</u> thickness = 48.75 kg/m²
- Areas have been found with a mean crust thickness of 14 cm = an incredible 273 kg of Corich crusts per m² of seabed

Number of seamounts

Based on our data set of 34 measured seamounts:

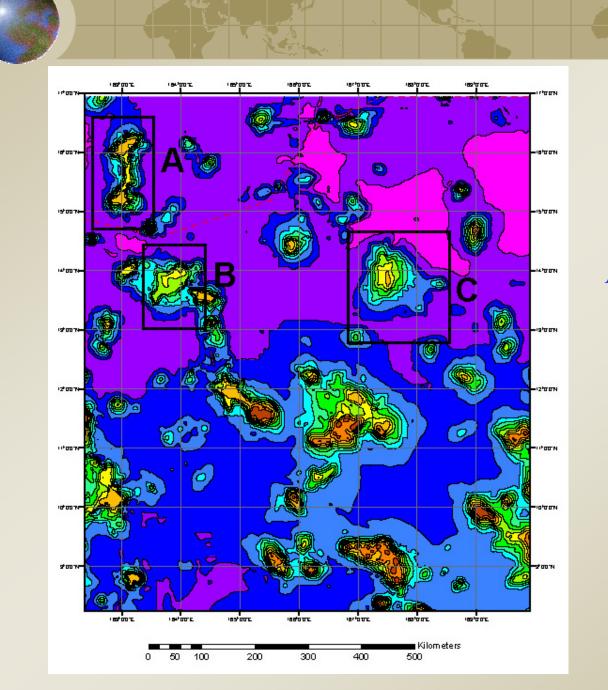
- 1.1 to 2.6 large guyots or 2.8-6.7 average-size seamounts needed for 20-year mining project
- A single larger seamount could sustain a 20-year mining operation under favorable conditions
- Large guyots with little sediment cover, subdued topography, and average crusts of >2.5 cm are most likely to be mined, all of which would reduce the number of seamounts needed for a 20-year mine site

Selection of Lease-Block Size and Exploration Area

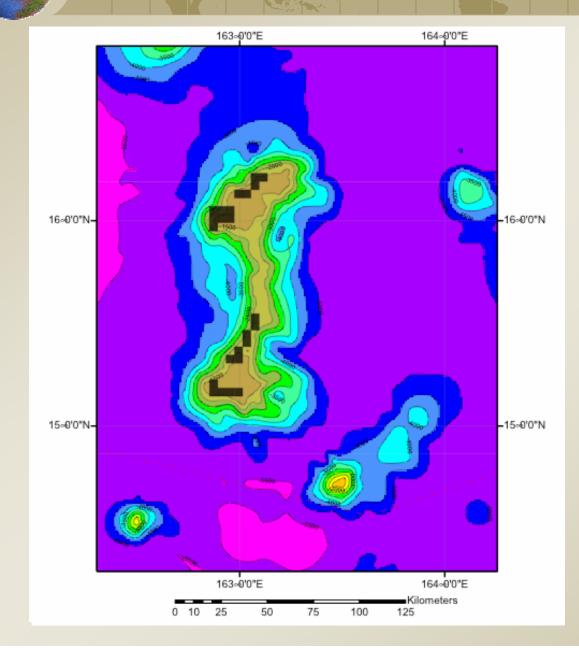
- Recommended exploration lease-block size is 100 km²
- The 100 km² blocks are composed of contiguous 20 km² sub-blocks
- 100 km² exploration blocks need not be contiguous
- The sub-block size should be small enough to ensure nearly continuous crust coverage within the sub-block

- The exploration lease is defined as twenty-five 100 km² blocks, yielding 2,500 km² for exploration
- Relinquishment of unwanted territory will proceed using the 20 km² sub-blocks
- 20 km² sub-blocks will be relinquished during
 2 or 3 phases as unfavorable areas are
 identified
- A final 25 sub-blocks will be chosen for a 20year mine site of 500 km²; on one seamount or portioned among two or more seamounts

Summary of Exploration/Mine Blocks

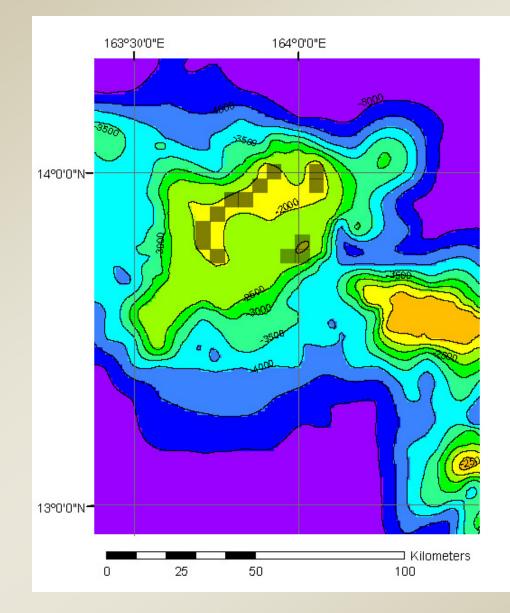

- Twenty-five 100 km² blocks leased for exploration
- Yielding 2,500 km² per exploration license
- Groups of 20 km² blocks relinquished during several phases
- 25 sub-blocks of 20 km² will define the final 20-year mine site of 500 km²

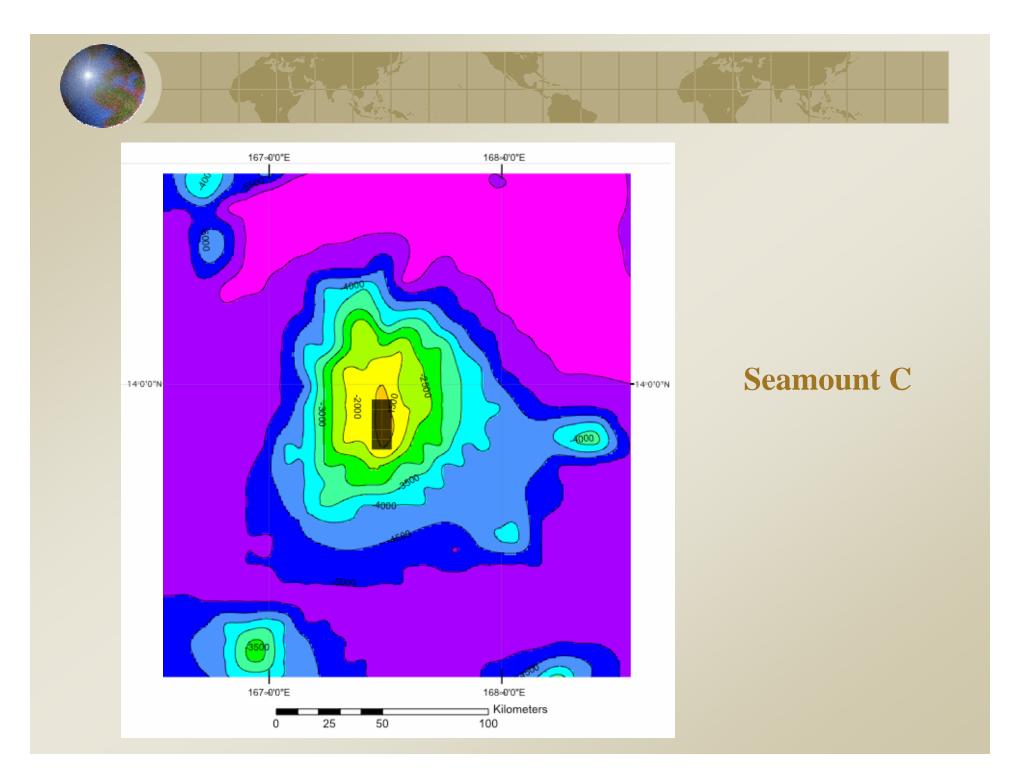
Mine Site Parameters


	Range	Model Site
Seamount area (km ²)	>400	>600
Seamount slope (°)	0-25	0-5
Water depth (m)	<2500	<2500
Mean crust thickness (cm)	2-6	2.5
Sediment cover (%)	5-60	30
Crust recovery (%)	70-90	82
Mine block size (km ²)	10-40	20
Exploration block size (km ²)	100-200	100

Area Mined

	Worst Case	Best Case	Model Site
Mean crust thickness (cm)	2.0	6.0	2.5
Wet tonnage (kg/m ²)	39	117	48.75
Annual production (10 ⁶ tons)	2	1	1
Area mined/year (km ²)	51.3	8.55	20.5
Recovery efficiency (%)	70	90	82
Area mined/year (km ²)	73.26	9.50	25.0
Area mined in 20 years (km ²)	1465	190	500
Area for exploration (km ²)	7326	950	2500


Model Mine Sites


Seamount A

- Large composite seamount
- Total surface area: 9,309 km²
- Area above 2,500 m water depth: 2,939 km²
- This seamount can accommodate a single 20-year mine site

Seamount B

