JOGMEC

ISA workshop 2014 Nov.24-29 in Korea

The Outline of Environmental Survey conducted by JOGMEC

-the sediment sampling for macrofauna-

Teruyoshi Narita and Nobuyuki Okamoto

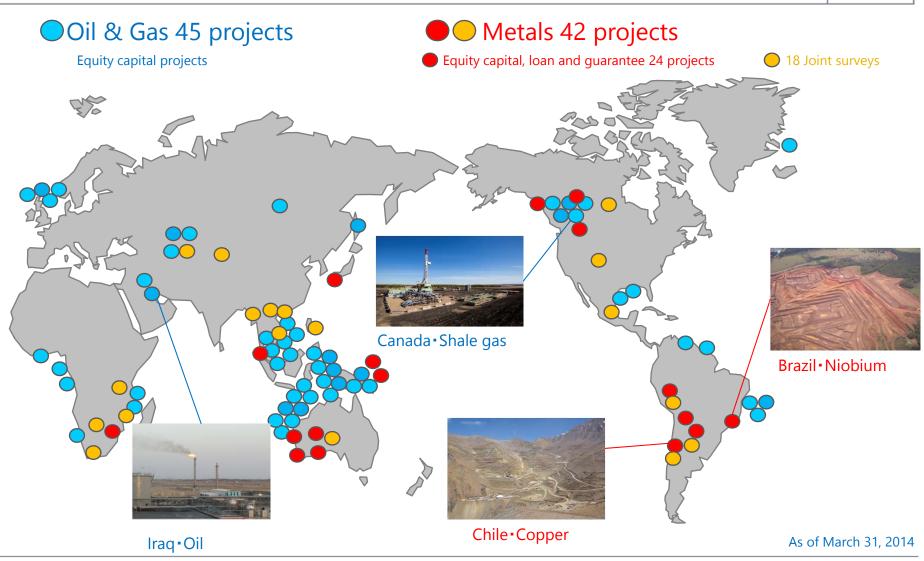
Japan Oil, Gas and Metals National Corporation

JOGMEC Overview

JOGMEC

Japan Oil, Gas and Metals National Corporation (JOGMEC is abbreviated name)Established:February 29, 2004[succeeded the functions of Japan National Oil Corporation(JNOC)
and Metal Mining Agency of Japan(MMAJ)]President:Hirobumi KawanoCapital:690 Billion Yen (As of July 2014)

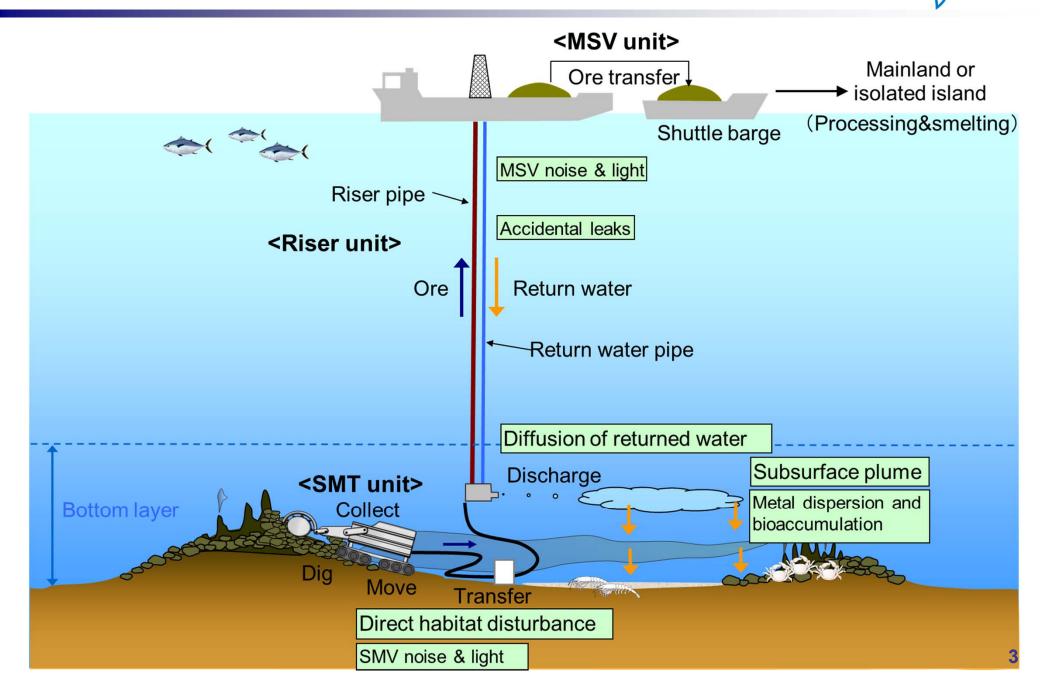
Mission


Securing Stable Supply of Oil, Natural Gas, Mineral Resources and Coal for Japanese Industries and Citizens

Activities

Japan Oil, Gas and Metals National Corporation

JOGMEC's Global Activities Oil & Gas , Metals



Japan Oil, Gas and Metals National Corporation

JOGMEC

2

Potential impacts of deep sea mining

JOGMEC

Environmental survey conducted by JOGMEC

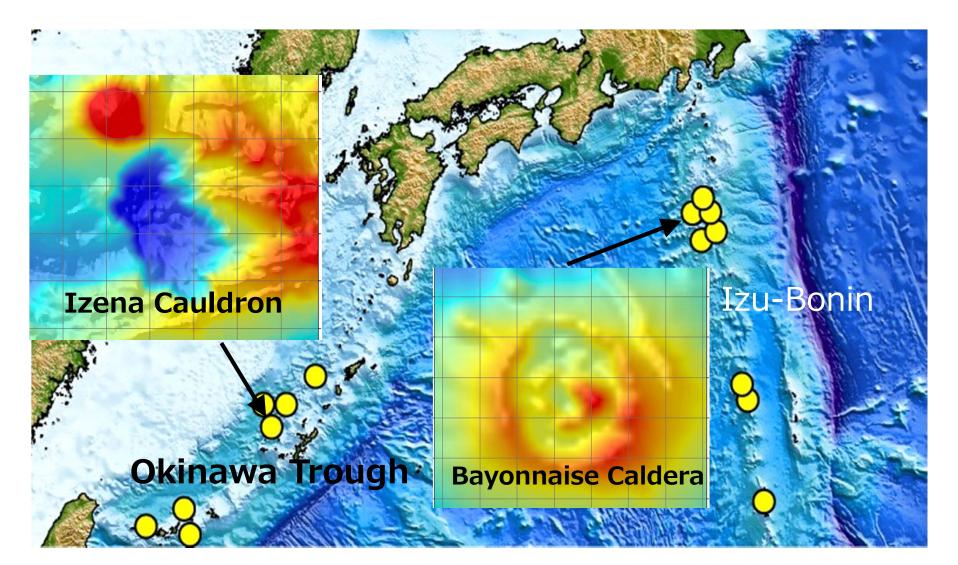
①Seafloor Massive Sulphides (SMS) (2008 fiscal year~)

②Cobalt-rich Ferromanganese Crusts (1997 fiscal year~)

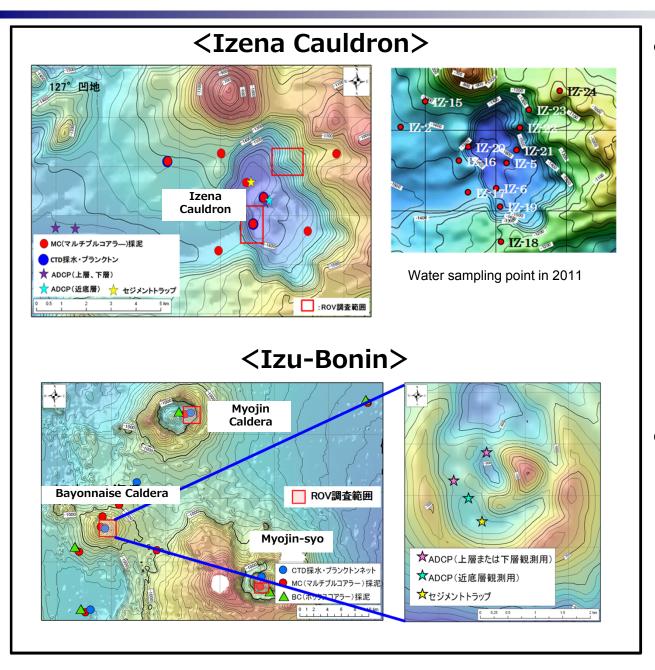
③Rare earth sediment

(2014fiscal year~)

Only current survey and water sampling

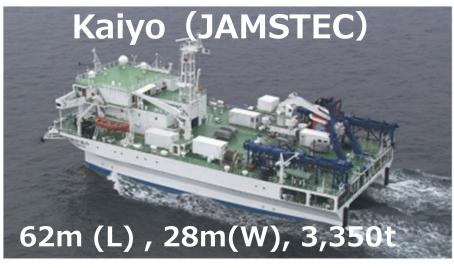

JOGMEC is conducting Environmental baseline survey in the Area where above minerals present.

Seafloor Massive Sulphides (SMS)



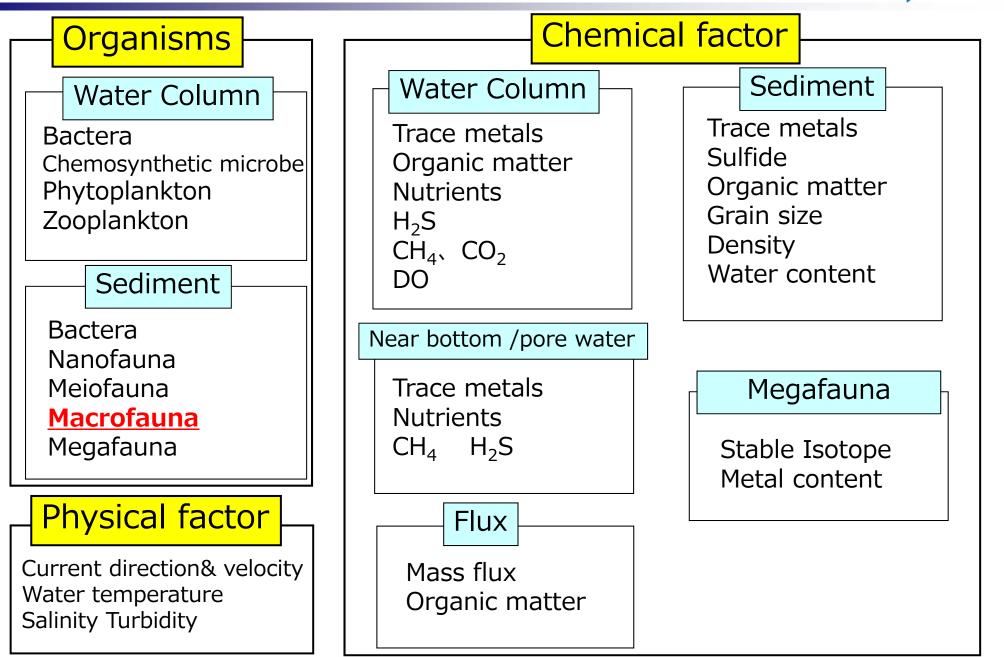
The location of the Izena Cauldron and Bayonnaise Caldera

Survey Area

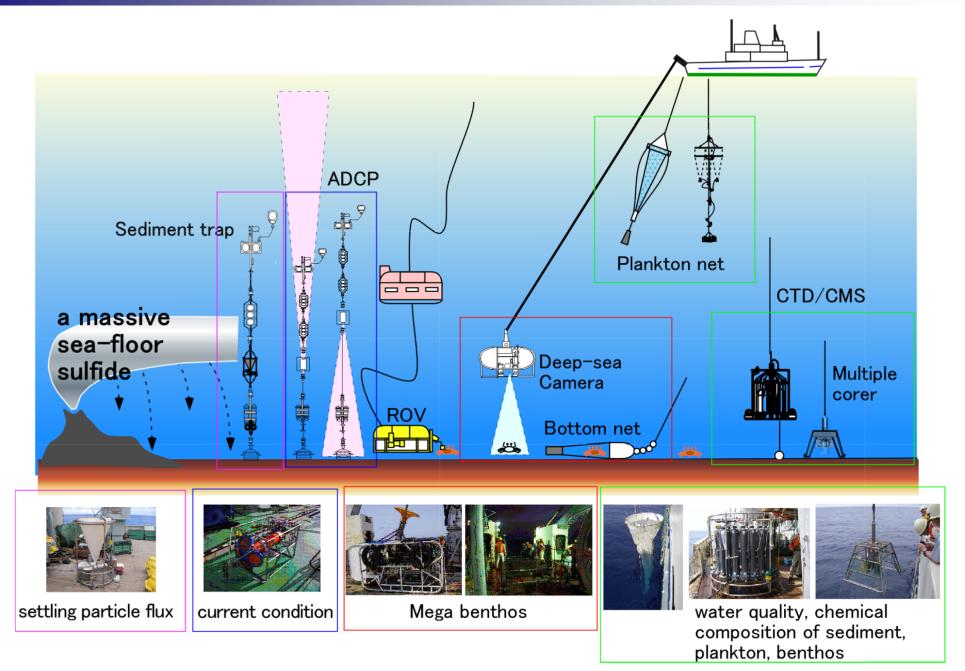


- In Izena Cauldron, the sediment samplings were carried out 1-2 times/year at inside and outside of Cauldron from 2008 to 2014 fiscal year.
- In Izu-Bonin, they were carried out from 2008 to 2010 fiscal year.

Research Vessels



Total number of 27 cruises



Environmental Baseline Survey Items

JOGMEC

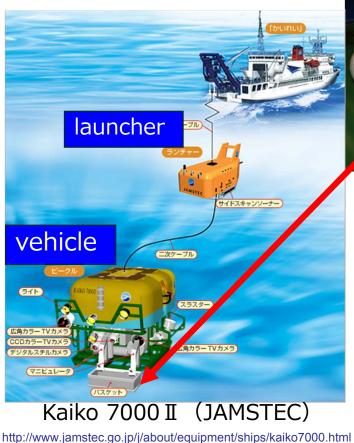
Schematic image of the baseline survey

JOGMEC

Multiple corer

Multiple corer (MC)

Collected core samples



Cutting core Transverse section of core Core samples were cut into 5 layers such as surface-0.5cm, 0.5-1cm, 1-2cm, 2-3cm, 3-5cm.

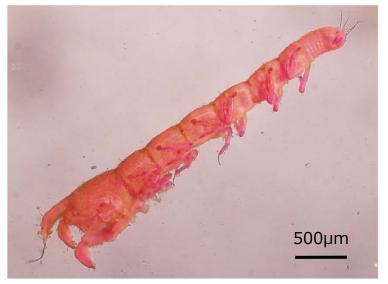
- Macrofauna samples for morphological identification were fixed by 10% formalin neutral buffer solution contained rose bengal, and those for gene analysis were fixed approximately 100% ethanol.
- The definition of macrofauna size is >250µm. (We unified categorization of past research to examine the interannual variations of macrofauna.

ROV:Remotely Operated Vehicle

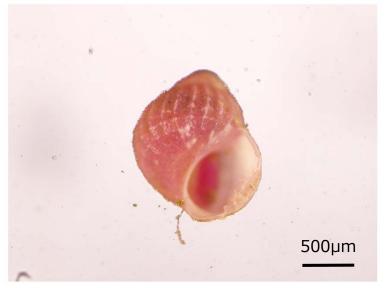
- ROV is useful to bottom sampling in bedrock dominance sites that MC can not be used.
- Sampling by choosing a suitable site while confirming the camera image.

ROV payload

Collection of sediment by push corer

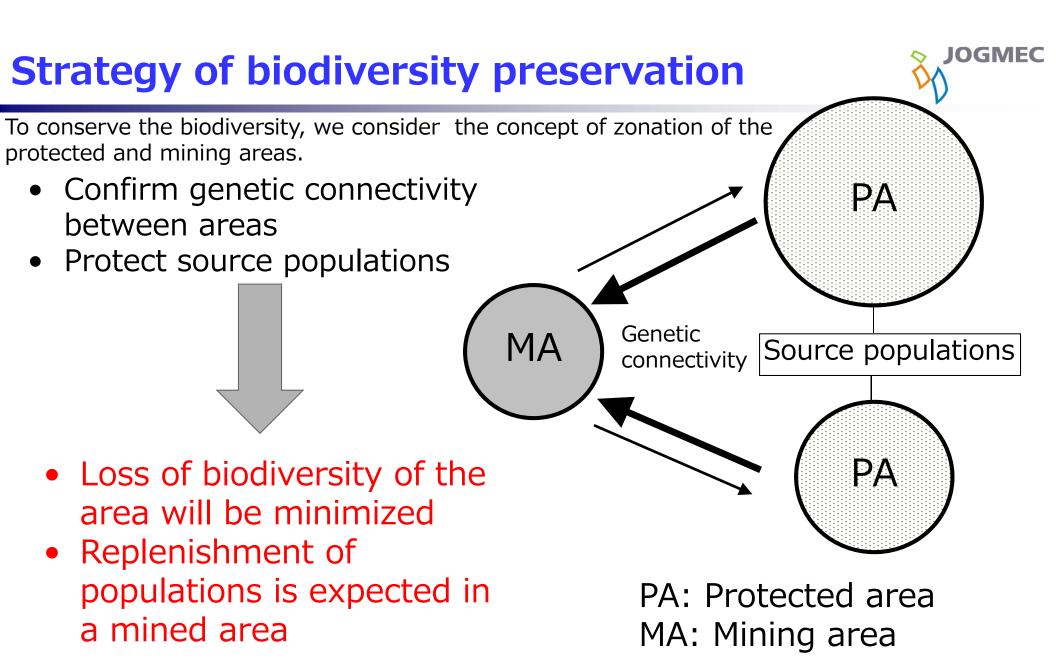

- Collection of sediment by ROV conducted since 2012 fiscal year.
- Sediment samples both organisms (bacteria,nano,meio,macrofauna) and chemical factors were collected by using the six push-corers mounted in ROV payload.
- Core processing method as well as the MC.

IOGMEC


The dominant taxa of macrofauna in SMS area

Maldanidae: Polychaeta

Tanaidacea: Crustacea



Gastropoda: Mollusca

- Formalin fixed samples were conducted morphological identification by using microscopy. The identification kept lower taxonomic resolution.
- In Izena Cauldron, 7 phyla, 7 classes, 23 orders, 24 families and 3genera of animals were identified. In Izu-Boninin, 9 phyla and 13 classes of animals were identified. The dominant taxa both Izena Cauldron and Izu-Bonin were Polychaeta and Crustacea etc. 13

Results of identification of macrofauna in Izena

Phylum	Class	Order	Family	Genus	Phylum	Class	Order	Family	Genus
Foraminifera	Foraminifera	Foraminifera(1)			Arthropoda	Ostracoda			
		Foraminifera(2)				Crustacea	Cumacea		
Nemertea							Tanaidacea		
Nematoda							Isopoda(1)		
Mollusca	Bivalvia	Nuculoida	Nuculidae				Isopoda(2)		
		Mytiloida	Mytilidae				Isopoda(3)		
		Pholadomyoida	Cuspidariidae				Isopoda(4)		
		Nuculoida	Nuculanidae				Anthuroidea	Paranthurida	
	Gastropoda	Vetigastropoda	Skeneidae				Gammaridea		
Annelida	Polychaeta	Phyllodocida	Sigalionidae					Ampeliscidae	
			Hesionidae					Phoxocephalidae	
		Syllidae	Exogoninae					Oedicerotidae	
		Cirratulida	Cirratulidae				Caprellidea	Caprellidae	
		Eunicidae	Onuphidae				Harpacticoida(C)		
		Orbiniida	Orbiniidae		Vertebrate	Ascidiacea			
			Paraonidae						
		Spionida	Spionidae						
		Flabelligerida	Flabelligeridae						
		Capiteliida	Capitellidae						
			Maldanidae	Clymenura sp.					
		Terebellida	Ampharetidae						
			Terebellidae	Terebellides sp.					
		Sabellida	Sabellidae	Poecilochaetus sp.					

Based on the above concepts, the genetic analysis of dominant meiofauna such as nematoda collected in some sites in Izena Cauldron is conducted.

The dominant Nematoda

Halalaimus sp. 2

Longicyatholaimus sp.

Leptolaimus sp.

Leptolaimus sp. 2

Longicyatholaimus sp. 2

Molgolaimus sp.

- Firstly, gene analysis of meiofauna samples was performed because macrofauna samples are small volume.
- Formalin fixed nematoda samples were conducted morphological identification by using microscopy.
- Ethanol fixed nematoda samples were sorted by 1 individuals and the gene analysis of 18S rRNA were conducted.
- In the result of homology search of the DNA database, 1 phyla, 3 familes and 7 genera of nematoda were identified (Nematoda, Comesomatidae, Oncholaimidae, Thoracostomopsidae, *Dichromadora* sp., *Leptolaimus* sp., *Sabatieria* sp., *Thalassoalaimus* sp., *Phanodermopsis* sp., *Sphaerolaimus* sp.,*Bathyeurystomina* sp.).

Cobalt-rich Ferromanganese Crusts

The acquirement for exploration rights for crust in high sea

In 27th January 2014, the exploration contract for 15 years of the cobalt-rich ferromanganese crusts (CRC) on high sea area located in Minamitorishima of southeast off the coast about 600km was signed between JOGMEC and the ISA.

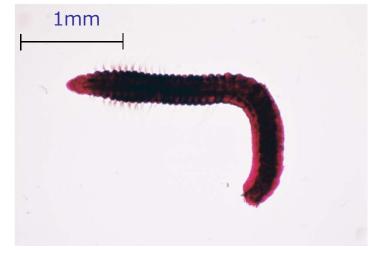
Japan's exploration area of CRC



Preliminary baseline studies for exploration of CRCC

- Preliminary baseline studies of current, water quality, sediments and biology since 1997
 - Long-term current/flux survey by ADCP/Sediment Trap
 - Video observation for megafauna by FDC
 - Vertical water column survey of water quality by CTD
 - Sediment survey by MC

	1	L		-														
Survey		Fiscal year																
	Instrument	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
		Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout	Seamout
		А	А	А	A	А	А	А	А	А	В	В	В	В	B, C, D	В	В	Е
Water current	cureent																	
	meter							-									-	
	ADCP																	
	-																	
Particle flux	Sediment																	
	trap								-				-					
Temperature								•	•	•	•	•	•	•				
Salinity DO NH4-N										•	•							
DO								-		•								
NH4-N										•								
PO ₄ -P	CTD RO							•	•	•								
NO ₂ -N	profiler							•	•	•								
NO ₃ -N										\bullet								
SiO ₂ -Si										•								
Chl-a								\bullet	\bullet	•								
тос														\bullet				
$\begin{array}{c} PO_4\text{-}P \\ NO_2\text{-}N \\ NO_3\text{-}N \\ SiO_2\text{-}Si \\ Chl-a \\ TOC \\ \hline Silica \\ \hline Opal \\ \hline CaCO_3 \\ \end{array}$		\bullet						\bullet		•	•	\bullet		\bullet				
Opal							\bullet			•	•							
					•					•	•							
Water current]									\bullet								
ТОС]									\bullet								
T-N ²⁵⁴ TH	MC									\bullet								
²⁵⁴ TH																		
Graine size																		
Bacteria										•								
Nanobenthos																		
Meiobenthos																		
Mcrobenthos	1			•								•	•					
Megafauna	Deep-tow																	
Near-bottom fauna	Sled net													•				
													-	-				20


The dominant taxa of macrofauna in CRC are

Sipuncula

Sabellidae

Paraonidae

- Samples were collected at flat topped seamount (Guyot) by MC (2-3 sites per cruise). Core processing method as well as the SMS.
- All samples were fixed 10% formalin neutral buffer solution contained rose bengal, and conducted morphological identification by using microscopy. The identification kept lower taxonomic resolution.
- In Seamount A, 6 phyla and 5-8 classes of animals were identified. Sipuncula and Polychaeta were dominant taxa.

- 1. The dominant taxa both Izena Cauldron and Izu-Bonin were Polychaeta and Crustacea etc.
- 2. Sipuncula and Polychaeta were dominant taxa in CRC area.
- 3. JOGMEC will continue to conduct the environmental baseline survey at the licensed CRC mining area in accordance with the SMS area .

IOGMEC

Thank you Merci Beaucoup Gracias 감사합니다

谢谢 Спасибо أ_ شُكْرًا.