

The pros and cons of barcoding: some preliminary results from recent cruises to the CCFZ

A Janssen¹, S Kaiser¹, K Meißner², N Brenke¹, L Menot³, U Raschka¹, P Martínez Arbizu¹

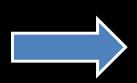
¹DZMB, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany ²DZMB, German Centre for Marine Biodiversity Research, Hamburg, Germany ³Institut français de recherche pour l'exploitation de la mer, IFREMER, Brest, France

DNA barcoding

- intiated by Hebert et al. 2002
- intends to use one or a few reference genes in order to assign unknown individuals to known species and facilitate the discovery of unknown species

DNA taxonomy

- proposed by Tautz et al. 2003
- based on the barcoding approach as its practical component
- DNA sequences (not morphological data) should be used as the main criterion for taxonomic decisions
- wants sequences to function as a universal reference systems in biological systematics


reverse taxonomy (Markmann & Tautz 2005)

- integrative molecular-morphological approach:
 - uses initially DNA sequences to construct genetic clusters or molecular operational taxonomic units (MOTUs) based on a similarity threshold
 - subsequently the identity of MOTUs is analyzed using traditional morphological methods
 - → in order to test the value of reverse taxonomy for assessment of diversity and species ranges

why do we need an integrative molecular-morphological approach?

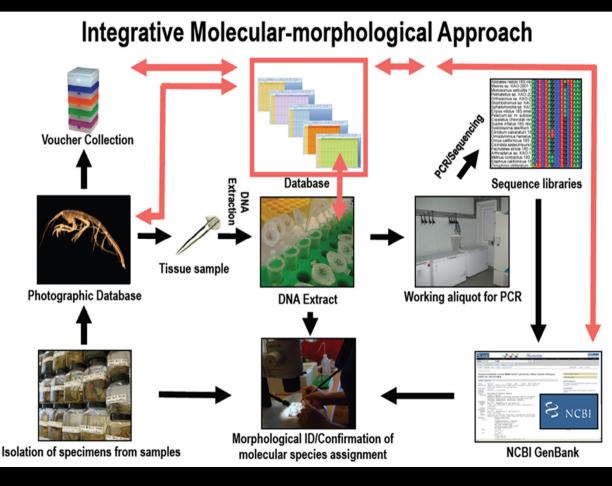
- benthic communities are extremely diverse
- many species occur as singletons
- most species are new to science (~90%)

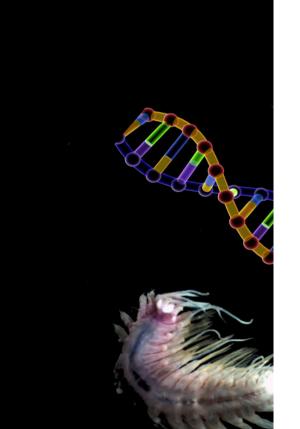
taxonomic effort required to describe all these species would be tremendous and morpho-species remain provisionally sorted

- hinders morphological comparisons between highly diverse datasets
- the assessment of regional diversity and biogeographic patterns

Image courtesy IHC Merwede

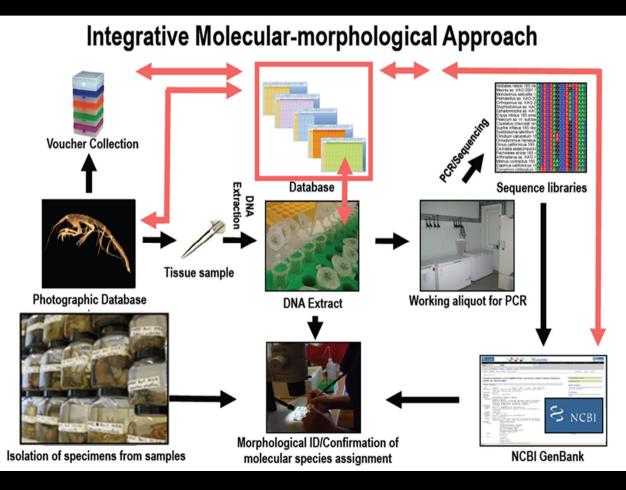
• is expected to begin within near future


- rapid characterization of the nodule fauna is required
- complementary tools and approaches are needed to speed-up the identification process


Reverse taxonomy

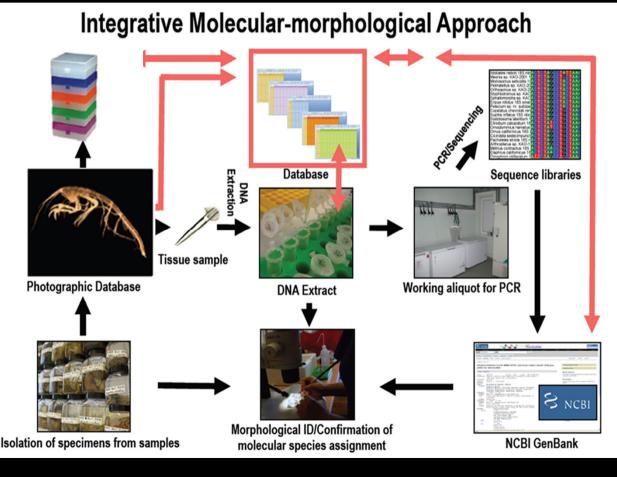
- allows for straight-forward allocation of individuals to genotypic clusters
- facilitates comparison, overcoming the time-consuming morphological approach

Material & Methods – treatment of samples


- samples were fixed in pre-cooled undenatured ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)

Material & Methods – treatment of samples

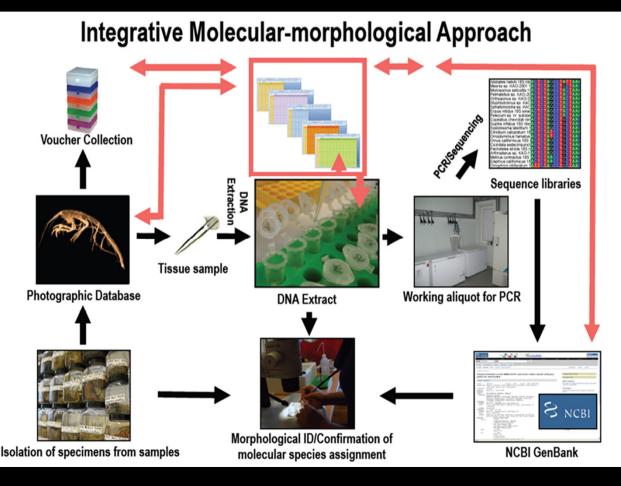
- samples were fixed in pre-cooled undenatured ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)



sorted into separate taxa as soon as possible

 to keep dilution of ethanol low and guarantee preservation of high-quality DNA

Material & Methods – treatment of samples

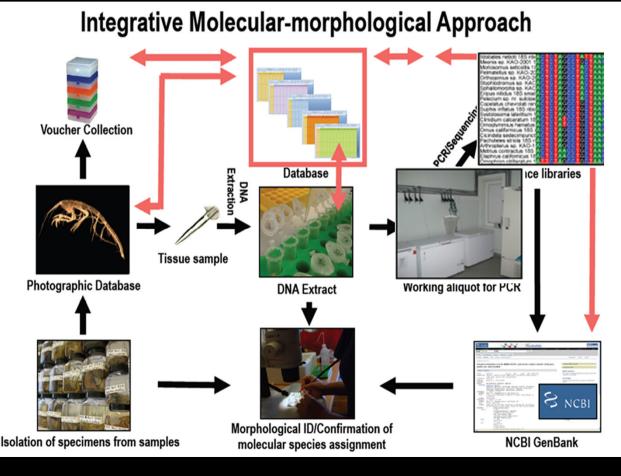

- samples were fixed in pre-cooled undenatured ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)

- each specimen was photographed
- tissue dissected
- according to tissue samples voucher were designated collection numbers

Material & Methods – treatment of samples

- samples were fixed in pre-cooled undenatured ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)

Chelex[®] 100 BioRad extraction, quick and dirty


 extracted DNA not always first quality

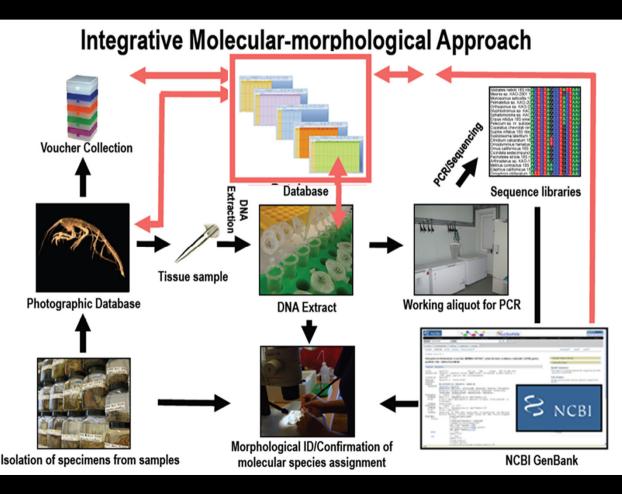
high amount of DNA

supernatant was used as template for amplification

Material & Methods – treatment of samples

- samples were fixed in pre-cooled undenatured ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)

mitochondrial COI: universal primers (Folmer 1994) LCO1490, HC02198

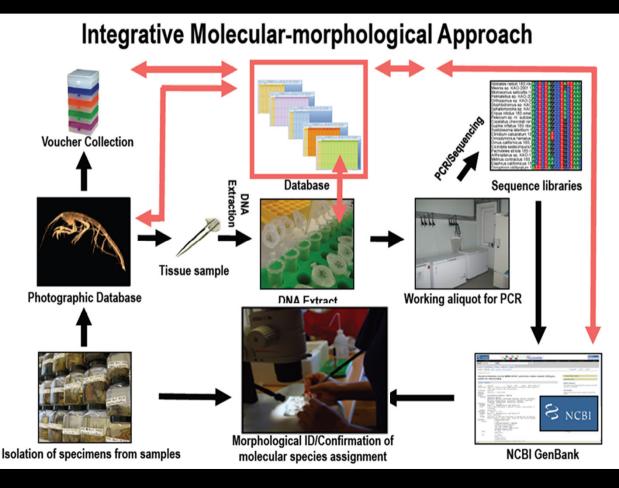

ullet

 PCR-products were sent for sequencing to MACROGEN

Material & Methods – treatment of samples

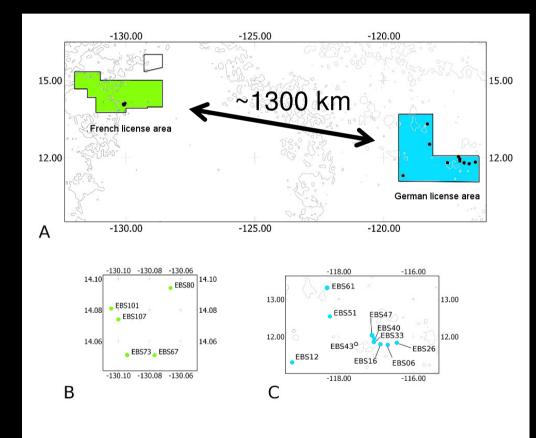
- samples were fixed in pre-cooled undenatured ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)

- sequences were blasted in NCBI
- all information collected should be entered in an own database


Material & Methods - treatment of sequences for genetic analyses

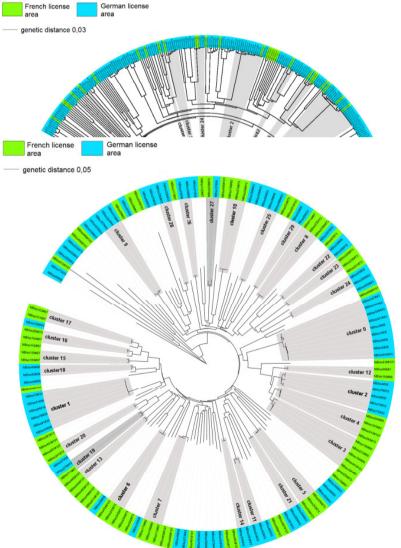
- online tool **CD-Hit Suite** (Ying et al. 2010) for identifying MOTUs using pairwise alignment with a defined similarity threshold:
 - sorts sequences in decreasing length order
 - − longest sequence \rightarrow reference of first cluster
 - each sequence is compared pairwise to the reference
 - if sequence similarity exceed the pre-defined threshold \rightarrow assignment to this cluster
 - if not \rightarrow a new cluster is defined using this sequence as reference
- thresholds used to define MOTUs is a primary concern for molecular taxonomy, when intraspecific variation is high
 - other approaches (GMYC / ABGD) are not appropriate
 high number of MOTUs and high number of singletons, typical for deep-sea

Material & Methods – treatment of samples


- samples were fixed in undenatureted ethanol (96%)
- stored at -20°C for at least 48h (after 24h replacing with new ethanol)

 identity of MOTUs was analyzed using morphological methods

merits and pitfalls of DNA taxonomy



- variation in genetic diversity and distribution ranges of isopods and polychaetes across the CCZ
- faunal assemblages were studied from two mining claims (German and French license areas) being located 1300 km apart

from Janssen et al. submitted

merits and pitfalls of DNA taxonomy

 most fruitful advantage: suitable programs can be conducted very fast and automated to construct MOTUs

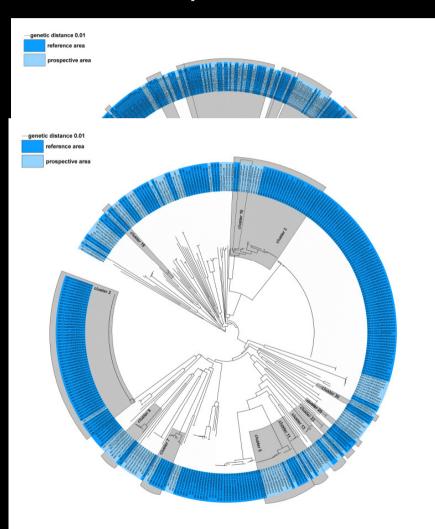
German vs French license area

Polychaeta: 556 sequences - 233 MOTUs 60% singletons 12% MOTUs shared

Isopoda: 150 sequences – 95 MOTUS 70% singletons 2% MOTUs shared

from Janssen et al. submitted

merits and pitfalls of DNA taxonomy



German license area

- examined variation in genetic diversity and small-scale connectivity within the German license area
- faunal assemblages were studied from two reference areas
 - IRA impact reference area
 - \rightarrow mining area
 - PRA preservation reference area
 → no mining
- both areas being located 60 km apart.

merits and pitfalls of DNA taxonomy

preservation vs impact area Polychaeta: 550 sequences - 147 MOTUs 45% singletons 27% MOTUs shared

Isopoda:

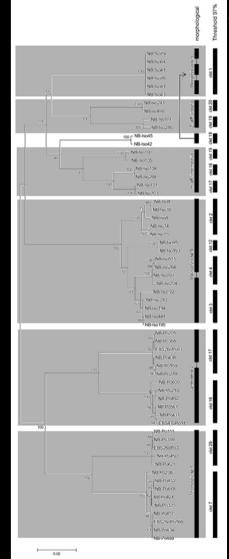
349 sequences – 83 MOTUs50% singletons13% MOTUs shared

time consuming work of morphology reduced to half of all specimens

 the disadvantage: morphological identities and ecological functions remain unknown

merits and pitfalls of DNA taxonomy

 the advantage: easy to compare sequences (i.e.GenBank)

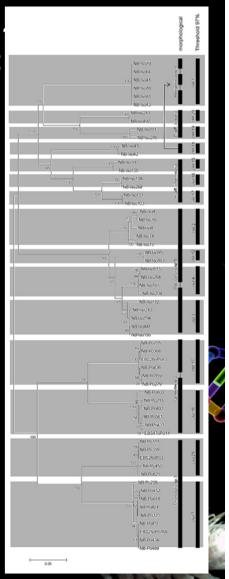

polychaete voucher MA10-Po88 corresponded to GenBank Accession No. GQ426633 with a sequence similiarity of 99.2%

Bathyglycinde profunda (Goniadidae) -previously recorded : Atlantic Ocean and CCFZ

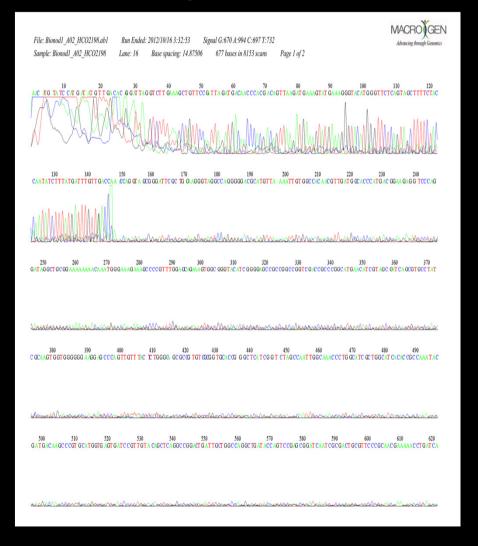
 the disadvantage: DNA barcodes can only assign to known species, but not relate them to a species name if unknown

Bathyglycinde profunda (Hartman & Fauchald, 1971)

merits and pitfalls of DNA taxonomy



- the advantage: discovery of cryptic species morphologically similar, but genetic distinct
 - ← 6 morpho-species


vs. 15 MOTUs ->

- genetic diversity was found to be 2-3 times higher than morphological diversity
- the disadvantage: overestimating the number of species when nuclear mitochondrial pseudogenes (numts) are coamplified

 \rightarrow especially problematic by using COI

merits and pitfalls of DNA taxonomy

- most serious problem: low sequencing success for abyssal species
 - success rate ~ 40%-50%
- approach of DNA taxonomy in deepsea studies is accompanied with a loss of information about a species community
 - analyses need to be adjusted

- integrative molecular-morphological approach (i.e. reverse taxonomy) appears robust and successful for a provisional inventory:
 - MOTUs mostly corresponded to morphologically identified species
 - due to integration of morphological methods → overcome most disadvantages of DNA taxonomy:
 - 1. morphological identities and ecological functions of MOTUs do not remain unknown
 - time-consuming morphological work can be reduced to MOTUs, which are represented frequently
 - 2. MOTUs are assigned to morpho-species categories at least
 - 3. overestimation of species due to pseudogenes can be neglected
 - \rightarrow aminoacid- translation prior to MOTU clustering
 - \rightarrow morphological determination of MOTUs

conclusions and recommendations

- assessing the mostly undescribed biodiversity of benthic communities in license areas within the CCZ is a challenge
- a chance for joint efforts and unparalleled collections
- barcodes can be easily exchanged between contactors and published in online repositories (GenBank, BOLD)
 - → barcodes are of tremendous help and should become standard procedure
 - integrative approach provides the most robust estimates on biodiversity and species ranges so far

Outlook

to improve the work in future:

- amplification of further mitochondrial and nuclear genes (i.e. to solve cryptic species-complexes, mismatch of MOTUs and morpho-species, higher sequencing success)
- population genetic analyses (i.e. RADtag / Tajima's D) for investigating genetic drift in CCFZ
- establishing a database for barcodes and additional corresponding informations (i.e photos, morphological characters etc.) of specimens from the CCFZ

THANKS!

(...) to the masters and crew of research vessels Sonne, L'Atalante & Kilo Moana, and the participants of MANGAN 10, 13, 14 and BIONOD

