Marine Mineral Resources of the AREA (with an emphasis on the Mid-Atlantic Ridge and south Indian Ridge) - Types, distribution, and the role of marine scientific research in their discovery

ISA - CONTRACTORS

Mineral		Pacific C)cean						Indian Ocean	Atlantic Ocean
Туре										
							di			88
	IOM [07]	Yuzmor	geologiya,	Korea	China	Japan	France		India	
Polymetallic	[2001]	Russia		[2001]	[2001]	[2001]	[2001]		[2002]	
Nodules		[2001]						(
	Germany	Nauru	Tonga	UKSRL	GSR	Maraw	Singa	Cook		
	[2006]	[2011]	[2012]	[2013]	[2013]	а	pore	Islan		
								d		

		Q		6 J	
Co-crust	Japan [2014]	China [2014]	Russia [2015]		Brazil

PM-	China (2011),	Russia (2012) and
Sulphides	Korea (2014) and	France (2014)
	India and	[Mid-Atlantic]
	Germany	

Physiography of the seabed

1977@ Copyright by Marie Tharp 1977/2003

Mid-ocean Ridges Se Back Arc Basin Pla

Sea mounts, Ridges Plateau

Abyssal Plains

@Peterson, 2011 @Ocean explorer NO		Halbach 2009	(DORD, Japan) (DORD, Japan) (D
Depth (m)	1,500-5,000	4,00 - 4,000	4 – 6,000
Major Minerals	Copper, Zinc, Lead	Manganese, Iron	Manganese, Iron
Minor Minerals	Gold, Silver, REE	Cobalt, Nickel, Platinum, REE	Copper, Nickel, Cobalt, REE

What are Polymetallic Nodules?

• They are small (typically pea to golf ball sized) deposits, occur at sediment covered Abyssal plains in around 4000-6000 depth.

Smooth

coalesced

- They contain a relatively high percentage of the metals such as Mn, Fe, Ni, Cu, Co, Zn, Mo
- They are of economic interest because of their high nickel, copper and cobalt content
- Form in situ in various shapes, by precipitation of metals from bottom sea water and from sediment pore fluids around a nucleus

- Common core materials include rock pieces, shark teeth, whale bone or meteorite fragment.
- They grow very slowly (~mm/million years) and can be tens of million years old.
- They exist in most oceanic basins. They are most abundant in oceanic regions where sedimentation rates are low, and in areas where non-biogenic sediments dominate (red clay).

Element	Atlantic	Pacific	Indian	World
				Oceans
Mangan	13.25	20.10	15.25	18.60
ese				
(wt. %)				
Iron	16.97	11.40	14.23	12.40
Nickel	0.32	0.76	0.43	0.66
Copper	0.13	0.54	0.25	0.45
Cobalt	0.27	0.27	0.21	0.27
Zinc	0.12	0.16	0.15	0.12
Lead	0.14	0.08	0.10	0.09

[Source: Ghosh and Mukhopadhyay, 2000]

Equipment for exploration and sampling - schematic

Some Equipment

Sampling methodology

World location – deep sea bed minerals

Crust sampling locations – ISA data repository

Co-rich Crusts

- Grow on hard rock surfaces on sea mounts, ridges and plateaus, where pelagic sedimentation is generally very low or nil.
- Economic potential was assessed in early 80s by German scientists
- Extremely slow rates of growth (1-7 mm/m.yr). Thickness of oxide layer varies from <1 up to 250 mm
- Metals precipitates from surface adsorption of seawater.
- Contain Fe, Mn, Ni, Co, Zn, Ba, Mo, Sr, REE & other minerals
- Crusts have more REE over other marine minerals.

- The seamounts show diverse morphology, scale, water depth on top, slope angle, substrate and pelagic sediments
- They are mostly Guyots (large and small), conical & some other types. Large guyots can be 100 km or more on the major axis and the most promising
- Grade, abundance and accessibility are important for resource estimation. Abundance is thickness, metal contents & density
- Have high porosity (60%) & specific surface area (300 m²/g)
- Majority substrate rocks are breccia, basalts, phosphorite, limestone
- Topography is most important to determine crusts distribution
- Stability of seamount basement is important in determining the economic potentiality of the crusts

Composition of Co- crust

Iron	15.1-22.9
Manganese	13.5 - 26.3
Nickel [ppm]	3,255 - 5,716
Copper	713 - 1,075
Cobalt	3,006 - 7,888
Zinc	512 - 864
Barium	1494 - 4,085
Molybdenum	334 - 569
Strontium	1,066 -1,848
Cerium	696 - 1,684

Copyright©ISA 2007 Data Source Bathymetry: GEBCO

Cobalt-Rich Ferromanganese Crust Exploration Areas in the Pacific Ocean

Cobalt-Rich Ferromanganese Crust Exploration Areas on South Atlantic Seamounts

Approved plans of work

Polymetallic Sulfide Deposits

- Mid ocean ridges extend about 65,000 km across the ocean floor. New crust is created along these ridges. Polymetallic sulfides mainly occur along the rift valleys of ridges
- The first discovery of sub-marine hydrothermal venting in mid seventies and associated bio-communities changed the perception how we looked at life earlier.
- Hydrothermal circulation happens when the water enters the earth's through these fractures. Water gets very hot there in contact with the host rock and leaches their metals, thus changing its composition.

➤ This extremely hot (sometime above 400° C) mineral rich water rises up again, and in contact with the cold bottom water, solidifies.

Sulfide deposits contain iron, copper, zinc, silver and gold in variable concentrations and are precipitated beneath and on the seafloor where high-temperature hot springs discharge through mineralized chimneys, also called Black smokers.

Composition of sulphide deposits

Element	Mid-Ocean Ridges at Divergent Plate Boundaries	Volcanic Island Chains at Convergent Plate Boundaries (range of composition)
Lead (weight percent)	0.1	0.4 - 11.8
Iron	26.4	6.2 – 13
Zinc	8.5	16.5 – 20.2
Copper	4.8	3.3 – 4.0
Barium	1.8	7.2 – 12.6
Arsenic [ppm]	235	845 – 17,500
Antimony	46	106 - 6,710
Silver	113	217 – 2,304
Gold	1.2	4.5 – 3.1
Number of samples analyzed	1,259	613

Techniques of detecting Sulphide mineralization

- Geo-Acoustic profiling and mapping
- Seismic and electromagnetic technologies
- Remote detection through deep-towed vehicles ROV
- Detecting and determining the physical and chemical anomalies in the water column above the ridge system
- Sampling and analysis of fluids and structures
- Mineralogical and detailed petrological studies

Environment objectives

- Environmental regulations require understanding of Ecosystems in different seafloor settings
- Developing an environmental database, publications and scientific expertise

•Standardization of data collection and production of standardized sampling strategies

•Coordination of projects; consultations on sampling protocols

- Marine species diversity in oceans can be compared to that of rainforests [May, 1994]
- A new species is found every sq m of seafloor sediment [Grassle & Maciolek, 1992]
- Each hydrothermal field has its unique species [Tunnicliffe et.al., 1998]
- Microbes associated have great scientific and industrial value
- ISA has organized several workshops to understand these bio-diversities and ecosystems

Metal extraction

1

HISTORY Ocean Mining Incorporated

PRESENT Single collector fluid Dredge system

Photo credits: Ted Brockett, SOSI

Photo – DORD Japan

Deep sea mining - PMN

- Depth of deposit and Harsh environment
- Distance from main land
- Technology Development-Processing and mining costs, Environment issues
- Techno-economic feasibility

- No over burden to remove
- Two dimensional, vast deposits
- Three to four metals from same site
- Mobile mining platform which can be taken from one part to other
- No roads

Seafloor map of the Equatorial East Atlantic Seamount Province located offshore equatorial west Africa with 25 prospective seamounts (red dots). Halbach (2009)