

Workshop on Processing Technologies, Metal Recoveries and Economic Feasibility of Deep Sea Mining, Warsaw, Poland, 3-6 September 2018

JOGMEC activities on the R/D of processing and metallurgical technologies for cobaltrich ferromanganese crusts

September 2018

Nobuyuki Okamoto^{*1}, Hiroshi Shibasaki^{*1}, Mikio Kobayashi^{*1}, Mayumi Ito^{*2}, Yasuhiro Konishi^{*3} and Tasuya Ooki^{*4}

*1:JOGMEC, *2: Hokkaido University, *3: Osaka Prefectural University, *4: National Institute of Advanced Industrial Science and Technology (AIST)

Japan Oil, Gas and Metals National Corporation

OUTLINE

JOGMEC Mission

- Processing & Metallurgical Technologies for Crusts
 - Processing
 - Metallurgy
 - Bio-leaching
- > Other Topics (Polymetallic sulphides)

Conclusion and Future Plan

JOGMEC's Mission

JOGMEC is an organization under the jurisdiction of the Ministry of Economy, Trade and Industry (METI)

JOGMEC contributes to the stable supply of various mineral resources and energy to Japan

IOGMEC

JOGMEC survey history on marine manganese deposits

More than **30 yrs**. history in the high seas & EEZ

1987 NW pacific for crusts

Stage 1 (Dredge sampling) Stage-2 (Coring sampling)

1985 South Pacific region (SOPAC)

Manganese nodules: Cook, Kiribati, Tuvalu, Samoa, Niue

Crusts: Marshall, FSM, Kiribati, Tuvalu

ISA license area for crusts

2014

Exploration areas for cobalt-rich ferromanganese crusts

Workshop on Processing Technologies, Metal Recoveries and Economic Feasibility of Deep Sea Mining, Warsaw, Poland

Geological setting@ Japan's license area for crusts

R/D history of processing and metallurgy for CFC

RETAC JIG separation diagram

Proposed total process flow-sheet for CFC

Results of JIG separation test

Improved smelting and chlorine leaching process for CFC

Hydrometallurgical process (Shibasaki et al., 2015)

Improved smelting and chlorine leaching process for CFC

Workshop on Processing Technologies, Metal Recoveries and Economic Feasibility of Deep Sea Mining, Warsaw, Poland

IOGMEC

Reduction smelting test (Plasma torch furnace)

Bio-hydrometallurgy study

Conventional processing to recover value metals

- Pyrometallurgical process :
 - smelting
- Hydrometallurgical process :
 - high-temperature and high-pressure acid leaching
 - gas-reduction and ammoniacal leaching

Lab scale study: <u>Bio-hydrometallurical process</u>

"Bioleaching" : the use of microbes to recover value metals at room temperature and atomospheric pessure

OGMEO

Commercial-scale copper bioleaching plants

Workshop on Processing Technologies, Metal Recoveries and Economic Feasibility of Deep Sea Mining, Warsaw, Poland

Bioleaching tests in a tank reactor

	Initial operating conditions
Cell concentration	5 X 10 ⁷ cells / cm ³
Crust - liquid ratio	5 g /L
Leach solution	5mM Fe (III)-citrate [electron acceptor] 100 mM formate [electron donor] 35 mM Na-citrate [complexing agent]

IOGMEC

Bioleaching of Co, Ni and Mn from ferromanganese crusts in a batch reactor

Other minerals

SEM-MLA images of Okinawa-C sample

(Ooki, et al., 2015)

SEM-MLA images of Izu-Ogasawara-C sample

Grain size of each minerals is under 10um (Ooki, et al., 2015) Not easy to product Zn, Pb, or Cu concentrates respectively.

Workshop on Processing Technologies, Metal Recoveries and Economic Feasibility of Deep Sea Mining, Warsaw, Poland

Conclusion and future plan

- Basic studies of processing and metallurgical technologies was started in 2003.
- High crust recovery rate of 96% from -4+1mm grain size of crust and substrate mix samples obtained with RETAC JIG.
- Improved smelting and chorine leaching method with Pt recovery process were developed.
- Lab-scale new test with bio-leaching technologies were also conducted. In the test by bioleaching process, a much higher leaching rate was obtained as compared with chemical leaching. But application point of this method is limited.
- Scale-up tests and more efficient process are conducting during exploration contract.

OGME