# Protection and preservation of the marine environment from activities in the Area



# Who are the players? What is the game?















# Background - mineral deposits are habitats for deep-sea species







### Effects of mining on deep-sea organisms



Extinction of local populations

Direct physical damage to habitat

# The game – use conflicts

#### Key Players (stakeholders):

Mining interests

• Exploitation of crusts, nodules and SMS

#### Deep-sea biologists

- Approx. 600 experts worldwide
- Primary source of knowledge about deep-sea biodiversity
- New interest in ecosystem services

#### Conservation NGO's

- Recent interest in deep-sea conservation
- Genetic resource potential



#### ....many conservation players



# ..... who are the players?





- Evolved from Census of Marine Life
- International network for deep-sea ecosystem research
- Aims:
  - Advance understanding of biodiversity and ecosystem function in global deep ocean.
  - Bridge gap between science and society to inform sustainable management.
- Funded by Total Foundation for 2011-2016
- 450 members in 36 countries

# Deep-Ocean Stewardship Initiative

Inaugural Meeting April 15-17, 2013 Mexico City



INDFFF

DOS

VentBas

# Future DOSI Workshops

- Strategic Environmental Assessment of mining along the mid-Atlantic ridge (SMS and crusts)
- Environmental Management Strategy for The Area.
- Deep-sea economic tools and cost-benefit analysis for fisheries and mining

### ..... who are the players?





Forum for **all stakeholders** to develop a consensus on best way to manage the mining of SMS deposits.

Production of best-practice and primer documents to inform stakeholders and highlight up-to-date science to underpin effective management.



Contents lists available at SciVerse ScienceDirect

Marine Policy

journal homepage: www.elsevier.com/locate/marpol



# A primer for the Environmental Impact Assessment of mining at seafloor massive sulfide deposits



Patrick Colman Collins <sup>a,\*</sup>, Peter Croot <sup>a</sup>, Jens Carlsson <sup>b</sup>, Ana Colaço <sup>c</sup>, Anthony Grehan <sup>a</sup>, Kiseong Hyeong <sup>d</sup>, Robert Kennedy <sup>a</sup>, Christian Mohn <sup>e</sup>, Samantha Smith <sup>f</sup>, Hiroyuki Yamamoto <sup>g</sup>, Ashley Rowden <sup>h</sup>



#### MANAGING IMPACTS OF DEEP SEA RESOURCE EXPLOITATION

#### EU Project 2013-2016

MDAS





MIDAS MANAGING IMPACTS OF DEEP SEA RESOURCE EXPLOITATION

#### THE INTERNATIONAL LEGAL FRAMEWORK For deep sea mining: a primer

# Multiple players Multiple approaches to the game



# Simplified framework for considering impacts of seabed mining on deep-sea organisms

- Valuation
  - What's there? (rarity, uniqueness)
  - Value to marine ecosystem? (ecosystem function)
  - Value to society? (ecosystem goods and services)
- Recovery Trajectory
  - How long?
- Spatial Planning Considerations



#### Valuation - What's there?



#### Valuation – Rarity or Uniqueness (everything is not everywhere)

# Geographic range of affected species

# Uniqueness of local gene pool





# Valuation – Ecosystem function

("benefits that ecosystems derive from different components")

| <b>Ecosystem Function</b><br><b>Category</b> | Examples                                                          |
|----------------------------------------------|-------------------------------------------------------------------|
| Food                                         | Photosynthesis by plankton<br>supports fisheries                  |
| Regeneration processes                       | Recycling and filtration of natural and human waste               |
| Physical habitat                             | Corals and sponges create habitat<br>for fish and other organisms |
| Unknown                                      | Ecosystem functions yet to be discovered                          |

#### Valuation – Ecosystem services

("the benefits that people derive from ecosystems")

| <b>Ecosystem Service</b><br><b>Category</b> | Examples                                                            |
|---------------------------------------------|---------------------------------------------------------------------|
| Production of goods                         | Food, Pharmaceuticals<br>Durable materials<br>Energy                |
| Stabilization processes                     | Seabed and seashore stabilization<br>Weather and climate modulation |
| Scientific and Cultural value               | Scientific discovery<br>Educational value                           |
| Preservation of options                     | Goods and services yet to be discovered                             |

# Valuation - Scientific Value Marine Scientific Research is major stakeholder in deep-sea > 600 researchers globally, approx. 30 laboratories > \$250M annually in research funding



VOLCANOES OF THE

EEP

#### Valuation - Cultural Value

Entertainment

TRAILER

STILLS

MAKING OF

INTERVIEW

SOUNDTRACK

• Public education

#### Valuation – Potential Economic Value

#### Genetic Resources in the Deep Sea – The Promise



"... a source of new and viable wealth creation"\*

\* National strategy on marine bioprospecting, Norway, 2009

# Yondelis® (trabectedin)

- Marine derived anti-tumoral agent discovered in the colonial tunicate *Ecteinascidia turbinata* and now produced synthetically by PharmaMar.

- Currently approved for treatment of ovaria cancer in 57 countries



Ecteinascidia turbinata



#### Drug discovery and development from natural products



# Framework – evaluating seabed mining impacts

- Valuation
  - What's there? (rarity, uniqueness)
  - Value to marine ecosystem? (ecosystem function)
  - Value to society? (ecosystem goods and services)
- Recovery Trajectory

   How long?
- Spatial Planning Considerations



## Recovery Trajectory

- Extent of physical habitat disturbance
- Need for physical habitat to return to original state
- Natural rate of habitat recovery
- Rates of recolonization by fauna
- Species growth rates

# Framework – evaluating seabed mining impacts

- Valuation
  - What's there? (rarity, uniqueness)
  - Value to marine ecosystem? (ecosystem function)
  - Value to society? (ecosystem goods and services)
- Recovery Trajectory • How long?
- Spatial planning considerations



# Spatial Planning Considerations

- Regional patterns in species distribution
- Is recovery a realistic goal?
- Location and size of reserve areas

ISA Sensitization Seminar - Exploiting Deep Seabed Mineral Resources in the Area Pretoria, 18 March 2015

#### Fauna of Cobalt-Rich Ferromanganese Crust Seamounts

Technical Study: No. 8



# Crusts (Co-rich, Fe-Mn)

- Fauna data from studies in Hawaiian seamount chain Video from submersible &
- **ROV** dives



- 967 'species'
- What lives where?



# Seamounts with Co-crusts *may* have different fauna from non-crust seamounts





- some crust influence

# **Ecosystem Function - Biogenic habitat**

# **Ecosystem Function - Biofiltration**



# **Ecosystem Function - Biofiltration**

Difficult to quantify



# Potential loss of biofiltration capacity for 20 km<sup>2</sup> mine sub-block on seamounts



### Impact evaluation framework - crusts

| Valuation Criterion              | Value                                                                |
|----------------------------------|----------------------------------------------------------------------|
| What's there?                    | 967 'species' on Hawaiian seamount chain                             |
| Rare or unique                   | Possibly                                                             |
| Ecosystem function               | Corals create physical habitat<br>Corals and sponges filter seawater |
| Scientific and<br>Cultural value | Seamounts are biodiversity<br>hotspots                               |
| Potential economic value         | Seamount fisheries                                                   |

## Recovery Trajectory

- crusts take millions of year to form
- large organisms on crusts grow very slowly (10's to 100's of years)



# Spatial Planning Considerations - Crusts

Need to protect some crust habitat? Depth is important consideration.

> Region of cobalt-rich crust potential

> > Hawaiian Islands



# **Seafloor Massive Sulphides**

Depths 100-5000 metres
Organisms directly colonize active (venting hot water) mineral deposits
100's of unique species
High degree of genetic novelty



Hydrothermal vents - energy oases for specialized ecosystems

#### Specialised animals and microbes colonise seafloor vents

H<sub>2</sub>S in hydrothermal fluids provides energy for *chemosynthesis* of new organic matter

High biomass
 Rapid growth
 Low animal biodiversity
 High microbial diversity

### Genetic resources at hydrothermal vents

- Small number of animal species
- High, unquantified diversity of microbes
- Genetic novelty
  - Growth at high temperatures
  - Resistance to heavy metals
  - Unusual symbioses



### Impact Evaluation Framework – SMS deposits

| Valuation Criterion      | Value                                                   |
|--------------------------|---------------------------------------------------------|
| What's there?            | Specialized animals and microbes at hydrothermal vents  |
| Rare or unique           | >80% unique to hydrothermal events<br>Regional endemism |
| Scientific value         | High                                                    |
| Cultural value           | High                                                    |
| Potential economic value | High potential                                          |

Recovery Trajectory = high capacity for rapid recolonisation – requires nearby mother populations

# Spatial Planning Considerations – SMS

- Larvae can recolonize disturbed sites from nearby populations
- Some species known from single sites only need more info
- Identify nearby reserve areas







# Manganese Nodule Fauna

#### Mobile megafauna



#### Attached to nodules



#### Sediment infauna



### Impact evaluation framework – Mn nodules

| Valuation Criterion      | Value                                                                     |
|--------------------------|---------------------------------------------------------------------------|
| What's there?            | High diversity, still counting                                            |
| Rare or unique           | Possibly, especially fauna on nodules                                     |
| Scientific value         | Huge reservoir of species<br>Key to understanding ecology of<br>the abyss |
| Cultural value           | Undeveloped                                                               |
| Potential economic value | Unknown                                                                   |

#### Recovery trajectory = slow, very slow



#### Spatial Planning – Nodules

- Large scale mining operations
- Similar scales for buffer zones, protected areas
- Consider E-W and N-S gradients





Sediment plumes travel at 100 km distance from mining operation





## Summary – Crust, SMS and Nodules

| Valuation<br>Criterion      | Crusts                         | SMS                                     | Nodules                                     |
|-----------------------------|--------------------------------|-----------------------------------------|---------------------------------------------|
| What's there?               | High diversity seamount fauna  | Low diversity vent fauna                | High diversity,<br>still counting           |
| Rare or unique              | Possibly                       | 80% of species<br>found nowhere<br>else | Possibly,<br>especially fauna<br>on nodules |
| Scientific value            | Larger reservoir<br>of species | High, unusual<br>adaptations            | Huge reservoir<br>of species                |
| Cultural value              | Undeveloped                    | High                                    | Undeveloped                                 |
| Potential<br>economic value | Unknown                        | High biotech<br>potential               | Some fisheries,<br>Otherwise<br>unknown     |

# Monitoring Technologies

- How do we monitor environmental effects of mining operations in remote, deep ocean?





# Environmental monitoring of seabed mining operations

#### Ship-based monitoring programs









# Environmental monitoring of seabed mining operations

#### Underwater observatory technologies







#### Real-time cabled observatory technologies



Seafloor nodes provide power and communications to instrument platforms

to instrument platforms

# Real-time plume monitoring

75 kHz Acoustic Doppler Current Profiler (ADCP): 1903m below sea level; 251m above the seafloor Co-located CTDs and ACMs: 1953, 2028, 2103 & 2148m below sea level; 201, 126, 51 & 4m above the seafloor

۲

Mooring base and 650kg anchor weight on seafloor (2154m)

**NEPTUNE Canada** 

Plume imaging sonar

9

## Plume sonar - hourly images



# Cameras for monitoring recolonization



# Autonomous cabled observatory



Portable system for continuous monitoring ROV recharges battery pack and downloads data

# **Data Access from Real-Time Observatories**

- all sensor data and imagery archived
- online graphical previews of scalar data
- online viewing of video



# Observatory monitoring versus shipboard surveys and sampling

| Issue                         | Approach                       |                         |
|-------------------------------|--------------------------------|-------------------------|
|                               | Observatory<br>Experimentation | Surveys and<br>Sampling |
| % Habitat destruction         |                                | X                       |
| Plume dispersal               | X                              |                         |
| Uniqueness of gene pool       |                                | X                       |
| Resilience/<br>recolonization | X                              | X                       |
| Geographic<br>range           |                                | X                       |

# Acknowledgements

- Canada Foundation for Innovation
- British Columbia Ministry of Advanced Education
- Natural Sciences and Engineering Research Council of Canada
- Western Economic Diversification Canada
- University of Victoria



CANADA FOUNDATION FOR INNOVATION FONDATION CANADIENNE POUR L'INNOVATION



Western Economic Diversification Canada

Diversification de l'économie de l'Ouest Canada



British Columbia Knowledge Development Fund



