

ACTIVITIES ON IRZ & PRZ IN KOREAN CONTRACT AREA

Koreansture of Ocean Science & Technology

Berlin, Germany September 2017

Korea Contract Area

- 1994 : Registration as a pioneer investor (150,000 km²)
- 1997 : 1st relinquishment (30,000km²)
- 1999 : 2nd relinquishment (15,000km²)
- 2002 : Selection of final contract area (75,000km²)

- Stage I (1994-2010) : Resource assessment and environmental baseline study
 - 925 days (ave. 62 days/year)
- Stage II (2011-2015) : High resolution topographic and acoustic seafloor mapping in a prospective area and environment data collection for BIE (195 days)

Preservation Reference Zone

- Selection of a Long-term Monitoring Site in 1995
- Representative of the environmental characteristics of the southern Korea Contract Blocks
- KOMO (KODES Long-term Monitoring Station)
 - 10.5°N, 131.3°W
 - Chemical oceanographic observation since 1995
 - Operation of mooring system from 2003
- Can be served as the PRZ for 'Benthic Impact Experiment'
- Can be impacted by mining activities

- Conductivity-temperature-depth (CTD) system
- Temperature, Salinity, Dissolved oxygen, etc.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Depth-averaged Salinity

PRZ _ Physical Oceanography

- Long-term mooring system
- Current profiles at three different depths (1250m, 4550m, 5000m)

Progressive Vector Diagram

Donth	Observation	Mean Scalar Speed (cm/s)	Mean Vector Velocity (KOMO1)				
(m)	period		u(cm/s)	v(cm/s)	speed (cm/s)	Direction (degree)	
1,250	2008-2013	4.68	-0.65	0.22	0.39	288.6	
4,550	2003-2013	3.64	1.07	0.37	1.13	75.4	
5,000	2003-2013	3.63	1.27	0.32	1.31	75.37	

- Conductivity-temperature-depth (CTD) system
- Annual and depth variation of the major nutrients

DO (µmol/kg)

PRZ _ Particle flux

- Long-term Mooring System (Sediment trap)
- Annual variation of particle flux at three depth (1200m, 4500m, 4950m)

KIOST छेन्नेग्रेङ्मे

PRZ _ Particle flux

Korea Institute of Ocean Science & Technology

• Natural variation of total particle flux at three different depth

- Monthly variation
 - 2003-2007 vs. 2008-2014
 - 2008: PDO regime shift (warm to cold)

PRZ _ Biological community

- Bongo Net
- Abundance, biomass and species structure
 - Zooplankton

PRZ _ Biological community

- Multiple Corer
- Abundance, biomass and species structure
 - Meiofauna, Microfauna

0)	Contraction of		0	1	1		Dow	Download ~ GenBank Graphics Oxystomina sp. TCR202 18S riboson Sequence ID: gb[HM554525.1] Length: 1605 Range 1: 1 to 296 GenBank Graphics			
	1		1	X			Oxyst Sequer Range				
	A	-	1	1	1	9 /	Score 529 b	its(286	5)	Expect 1e-146	Identiti 293/29
			11	L	0	U	Query	1	CTCCQG	AATCAAAC	CTGATTCT
B	wer	5.3	Fart	-		Contraction of the local division of the loc	Sbjct	296	CTCCDG	AATCAAAC	XTGATICD
15	1	200	St.	1	Bug		Query	61	CCATOG	AAAGTTGA	TAAGGCAGA
ANY .			<i>¥</i> .			8.0	Sbjct	236	CCATOS	AAAGTTGA	TAAGGCAGN
and and						1 Series	Query	120	ATCONC	TAAGTEAT	CAGATICA
			11		3	1 -	Sbjet	176	ATCONC	TRAGTTAT	CAGATTCA
0	R)	for	No. of	A			Query	180	ATAAAT	COSCILICI	COSTANGO
\mathcal{O}		16	5	1		/ subtrain	Sbjct	116	ATAAAT	GOSCITICT	CCGTANGO
\smile	-		101	and its		R. BARR	Query	240	ACAGTT	ATCCARGE	MACTANA.
		~	0	Carlo	alle		Sbjct	56	ACAGTT	NTCCAAGE	NAGENAAA

Oxyste Sequen	omina ce 10: g	sp. TCR202 185 b(HM564628.1) La	ribosomal RNA ger right: 1605 Number of W	te, partial sequen lutches: 1	DB	
Score 529 bi	ts(286	Expect) 1e-146	Identities 293/296(99%)	Gaps 1/296(0%)	Strand Plus/Minus	
Query	1	CTCCOGARTCAAACO	CTGATTCTCOGTTACCOG	TTACAAOCATGGTAGG	OGCATRAACTR	60
Sbjct	296	CTCCGGAATCAAACC	CTGAT7CTCOGTTACCOG	TTACAACCATGOTNOG	OGCATAAACTA	231
Query	61	CCATOGARAGTTGAT	ANGCAGACACTTGANAG	ATGOSTOSCOGGTACG	A-GACCATGOG	115
Sbjet	236	CCATOGAMASTIGAT	AAGGCAGACRCTTGAAAG	ATGOSTOSCOGUTOCT	AGACCATGOG	171
Query	120	ATCGACTAAGTTATT	CAGATTCACCAGGTTACG	TRCOGANGTACGATTO	OTTTTGTTCTA	175
Sbj¢t	176	ATCOACTRAGTERT	CAGATTCACCAGGTTACG	TRCOGANGTRCGATTO	GTTTTGTTCTA	117
Query	180	ATAAATGOGCTTCTT	CCGTARGETCGARGCTTT	GCTGCGTGTATTAGCT	CINGARITACC	239
Sbjct	116	ATRAATGOGCTTCTT	CCGTANGGTOGANGCTTT	GCTGCGTGTATTAGCT	CTAGAATTACC	57
Query	240	ACAGTENTCCANGES	AAGTAAAATCTAATAAA	CTATEGCTUTTUTAAT	GAGCCAT 295	
sbict	56	ACAGTENTCCANGER	ANGENABARTCERATAAR	CTATOGCTOTTOTAAT	GAGCCAT 1	

PRZ _ Biological community

- Box Corer, Deep-towed Camera System
- Abundance, biomass and species structure
 - Macrofauna, Megafauna

Impact Reference Zone

- Selection for 'Benthic Impact Experiment' Site in 2010 (not as an Impact Reference Zone)
- Similar conditions with PRZ in environmental characteristics
- Dimension (100km², 10x10km)
 - 10°27' ~ 10°33'N, 131°53' ~ 131°58'W
 - Distance between IRZ & PRZ: ~70km
- Baseline studies from 2011 to 2014 for comparison between IRZ & PRZ

Korea Institute of Ocean Science & Technology

	Range	Average	Winter-Spring (Dec. – May)	Summer-Fall (June – Nov.)
КОМО	10.5 - 132.6	40.2	55.0	19.9
BIS	11.4 - 115.2	34.3	47.7	16.0

(mg m⁻² day⁻¹)

IRZ vs. PRZ _ Meiofauna

IRZ vs. PRZ _ Macrofauna

IRZ vs. PRZ _ Sediment Property

Future Exploration Plan of Korea

- Five year extension contract: 2016.4 2020. 4
- Objectives of activity programme (Two exploration cruises: 2018, 2019)
 - Estimation of polymetallic nodule abundance
 - Gathering additional environmental and biological data
- Exploration Plan for 2018 cruise (provisional)
 - RV Kilo Moana (Univ. of Hawaii)
 - Duration: 30days (20 May to 19 June)
 - Biological baseline data from IRZ, PRZ, and APEI
 - DCS data for mega-fauna distribution in KR5 area

Thank you !!!