The issue of scarcity in the design and monitoring of IRZ+PRZ

L. Menot

1. The need to quantify an impact with some level of confidence
2. The level of confidence achievable in the deep sea

Type II error and the power of statistical tests

Hypothesis: $\mathbf{H}_{0} \quad \bar{x}_{1}=\bar{x}_{2}$

$$
\mathbf{H}_{1} \quad \bar{x}_{1} \neq \bar{x}_{2}
$$

Hypothesis	H_{0} is true	H_{1} is true
H_{0} accepted	Good	Oups,there is an impact
H_{0} rejected	Oups,there is no impact	Good

The power of the analysis $1-\beta$ is a function of variance, effect size and sample size

Variance is a function of the mean

Taylor's law (also known as Taylor's power law) is an empirical law in ecology that relates the variance of the number of individuals of a species per unit area of habitat to the corresponding mean by a power law relationship

$$
\sigma^{2}=a \mu^{b}
$$

Assuming that individuals are randomly distributed

$$
\sigma^{2}=\mu
$$

Variance equals the mean
Why is it an issue in the deep sea?

Shallow - 3000 ind./m², $0.1 \mathrm{~m}^{2}=300$ individuals
Deep - $\mathbf{3 0 0}$ ind./ m^{2},
$0.25 \mathrm{~m}^{2}=75$ individuals
Deep - $\mathbf{3 0 0}$ ind./ m^{2},
$0.25 \mathrm{~m}^{2}=75$ individuals

Macrofaunal density patterns

DOMES A

47 Box-cores

752 individuals of polychaete

104 polychaete species

How many samples are needed to be $80 \%(1-\beta=0.8, \alpha=0.05)$ sure to get a statically significant difference in the abundance of a species when:

- The abundance is divided by 2 in the impact area
- The abundance in divided by 10 in the impact area

Basing conservation policies for the deep-sea floor on current-diversity concepts: a consideration of rarity

ROBERT S. CARNEY

Coastal Ecology Institute, Louisiana State University, Baton Rouge LA, USA
The rare component at depth is largely comprised of species more common at other locations near and far. The rare component on the shelf is comprised mostly of species which are consistently rare and restricted in distribution. These observations suggest a shallow-deep difference that is more one of degree than fundamental in nature; the deep having larger regions and regional species pools.

VOL. 165 , NO. 2 THE AMERICAN NATURALIST FEBRUARY 2005

A Source-Sink Hypothesis for Abyssal Biodiversity

 Philippe Bouchet, ${ }^{5, *}$ and Anders Warén ${ }^{6, * *}$

Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic

Conclusions and assumptions

- Even the most abundant species are scarce in the CCZ
- Low densities mean unrealistic sampling size to achieve reasonable statistical power.
- Assumptions:
-> same number of species $=$ same functions at community level
-> same abundance in dominant species = same environmental conditions
=> Monitoring species richness \& the abundance of the top 2 - 5 most abundant species within each functional / size group

