The Influence of Metals Processing Economics on the Choice of a Financial Payment Mechanism for DSM Polymetallic Nodules

Ministry of the Environment Republic of Poland Warsaw, Poland Sept 4, 2018

Richard Roth

Research Team: Randolph Kirchain, Carlos Munoz Royo, Frank Field & Thomas Peacock

Relationship between on-shore and off-shore economics

- ISA jurisdiction is limited to Off-Shore activities
- Revenues derived from ISA financial payment regime can only relate to offshore activities
 - Ad valorem (\$/metal value removed from sea)
 - Profit sharing (\$/profit of the collectors only)
 - Licensing fees (\$/year to allow collectors to operate)
 - Combinations
- These appear to be independent of the actions of the metals processor
- But they're linked through the profitability of the collectors which in turn depends on the ability to sell the nodules they collect from the sea.

Assessment requires understanding the mining &

refining processes

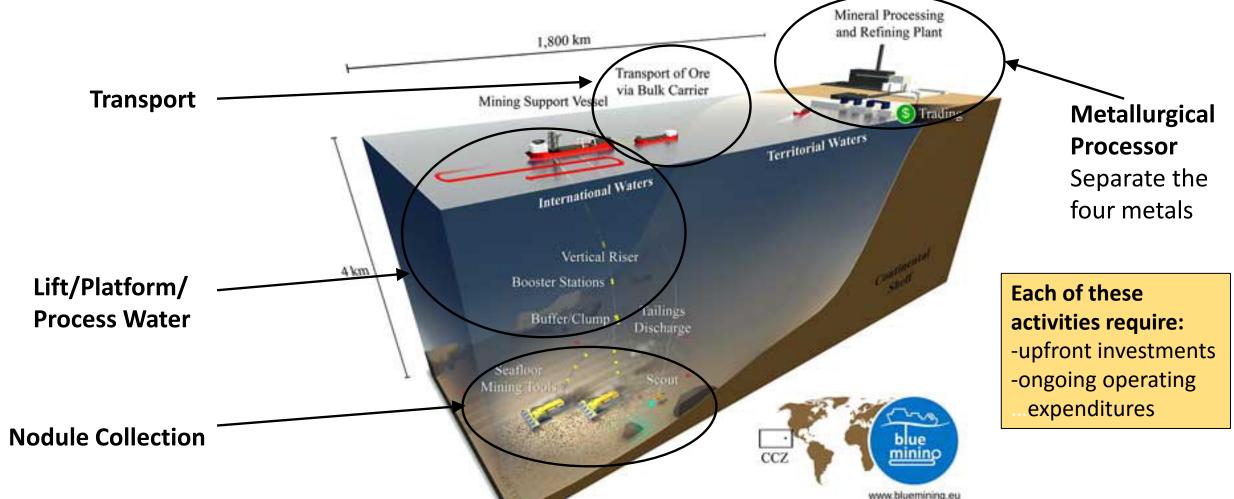


Image from: Marvasti, A. Env. and Resource Econ (2000) 17: 395. https://doi.org/10.1023/A:1026566931709

ISA Oversight Only Related to Collector Activities

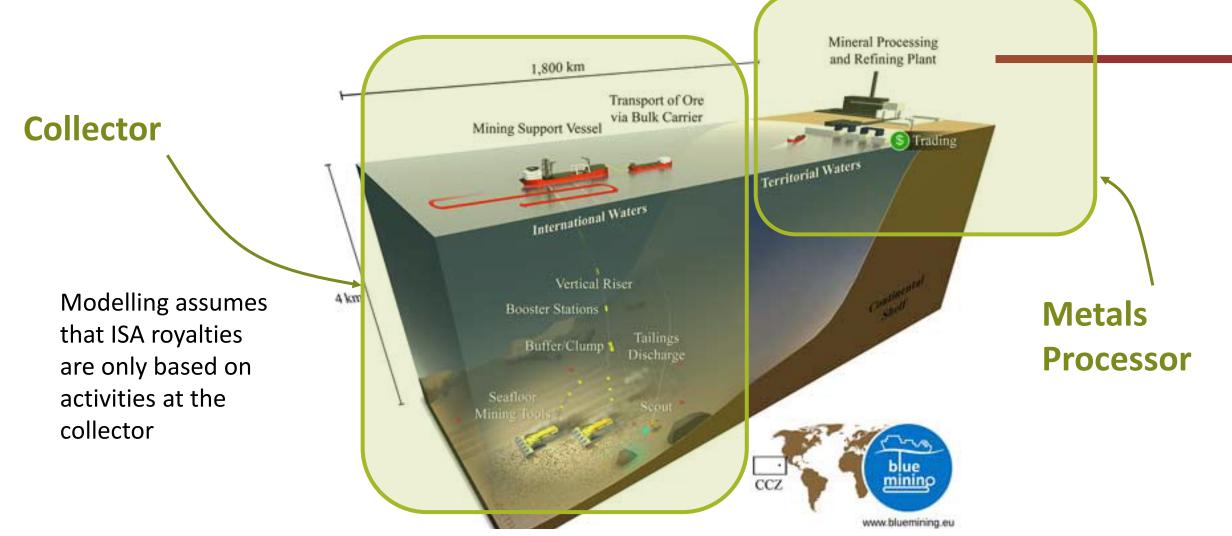
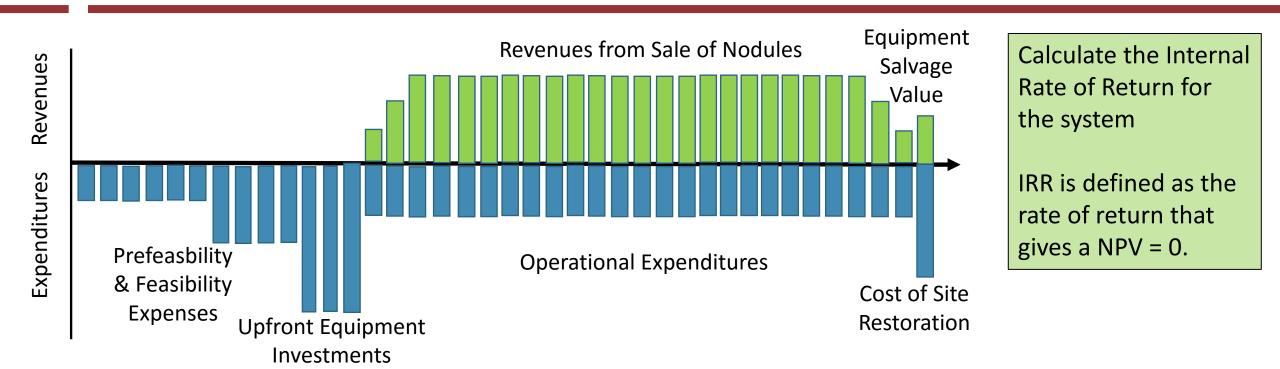
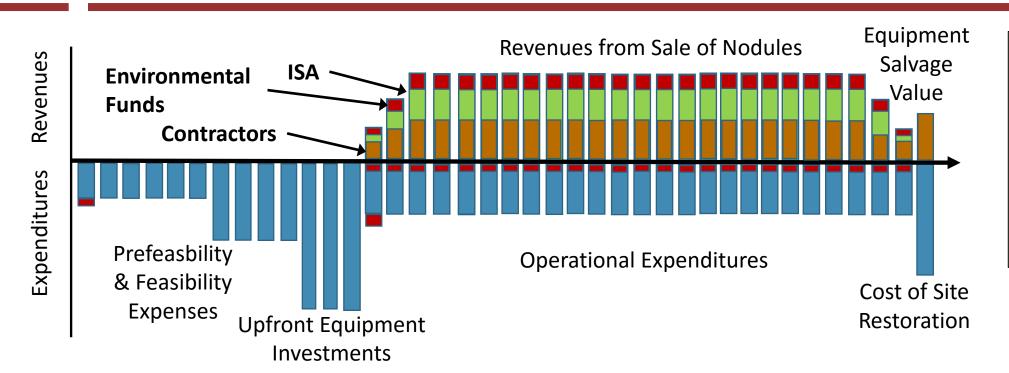



Image from: Marvasti, A. Env. and Resource Econ (2000) 17: 395. https://doi.org/10.1023/A:1026566931709

"At-Sea" Cash Flows Basis for Understanding ISA Decisions



Collectors investment money upfront on feasibility studies and equipment investments

They pay annual operating costs and receive revenues from the sale of nodules to an on-shore processor

Funds to be shared depends directly on revenue from the sale of nodules

Revenues from sale of nodules derives from the quantity sold and the price metals processors are willing to pay for nodules in the future

The revenues from nodule sales needs to be shared among different stakeholders

Some goes to the ISA to pay for expenses, support environmental funds and to be divided among member states


Some remains with the collectors to compensate for their costs and risk they incur with the upfront investments

Understanding collector cash flows therefore requires a forecast for nodule price

- No market currently exists for nodules
- However, nodule price should be related to:
 - Value of the metals to be extracted
 - Costs for metals processing (upfront & operational expenses)
 - Processor margins
- Metals processors have their own cash flow which depends on price they pay for nodules
- They will only invest if they believe they can achieve a sufficient return on their initial investment

Metals Processor Cash Flows

Metals processors economics will only work if they can get nodules at a low enough price

Metals processors will only invest if they believe that their future revenues from the sale of metals minus their annual operating expenses provides them with sufficient returns on their upfront investment considering risk

Nodule market prices will be set by negotiation between buyers (processors) & sellers (collectors)

- Collectors will attempt to get highest price possible for nodules
- Metals processors will attempt to obtain nodules for the lowest cost
- Cleared price will depend on the balance between available supply of nodules from collectors and demand from suppliers at each point in time
- Noduel demand will likely be determined by their scale of operation.
 - If operating at full utilization, demand for additional nodules is low
 - However, if processing plants are underutilized, demand will be high
 - Similar to situation with TC/RC margins in copper industry

Assume collectors & processors will each accept same return on investment

- Impossible to predict day-to-day market balance and price
- We can determine nodule price that gives the same returns for both the metals processors & the collectors
- Requires complete cash flow information for both

How will this be done?

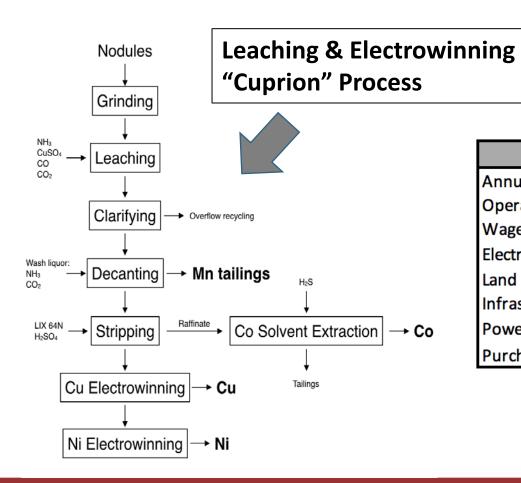
- 1. Calculate Overall System IRR using all costs to both collectors & processors (including royalties) and all metals revenues
- 2. Calculate Nodule Transfer Price by finding value that gives makes the Metals Processor IRR equal to the overall system IRR

Note: ISA royalties still only apply to the Collectors, but the recommended levels will depend on the nodule price which also depends on the Metals Processors

Many approaches to metals processing Some modeling choices need to be made

Metals Systems

- 3 metal (Co, Cu, Ni)
- 4 metal (Co, Cu, Ni, Mn)
 - But there are several Mn markets?
- 3 metal + Mn ore
 - Assume Mn tailing sell for similar price to Mn ore
- 3 metal + Mn ore + REE-Y
 - Possibly sell rare earths and yttrium
- 4 metal + REE-Y


Processing Routes

- Leaching + Electrowinning
- Smelting + Leaching
- All Leach
- Others
- Exact choice of processing route depends on the metals to be extraction and available technology

Let's look at 3 metal system + Mn ore

- Why this system?
 - Most analyses show the need to generate revenue from 4 metals to justify investments
 - However, Mn market is very complex
 - High value Electrolytic Mn Metal market (EMM) is too small to absorb all of the Mn content in the nodules
 - Do not want incur all of the expenses required to obtain high value Mn, but then have to sell into the lower value Ferromanganese markets
 - Get around this issue by assuming Mn tailings from Leach/Electrowin process are similar to currently mined Mn ore
 - Fortunately there is historical data on Mn ore prices for grades similar to Mn tailings

Analyzing Cost of Leaching/Electrowinning Process

Estimate capital investments & operating expenses for each process step (excluding nodule costs, to be calculated later)

General			
Annual production	3,000,000	tdn	
Operating days	330	days/year	
Wage including benefits	18	\$/hr	
Electricity cost	0.15	\$/kWh	
Land cost	27	\$/m2	
Infrastructure and facilities cost	13.5	\$/m2	
Power plant electricity supply	67	%	
Purchased electricity supply	33	%	

Nodules metal content		
Copper content	1.10%	
Cobalt content	0.21%	
Nickel content	1.30%	
Manganese content	27.00%	

Yields	
Copper	90%
Cobalt	80%
Nickel	95%

CAPEX	\$969M
OPEX	\$285M/yr

CAPEX Results: Cuprion Process

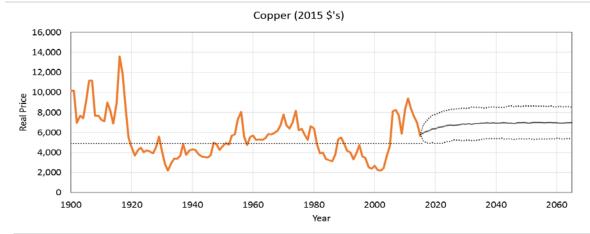
	Installed Equipment	Auxiliary Equipment	Land & Infrastructure	TOTAL
Grinding	\$31M	\$16M	\$1M	\$48M
Leaching	\$75M	\$38M	\$5M	\$118M
Stripping	\$66M	\$33M	\$3M	\$102M
Co Solvent Extraction	\$16M	\$8M	\$1M	\$25M
Cu Electrowinning	\$74M	\$37M	\$2M	\$113M
Ni Electrowinning	\$74M	\$37M	\$2M	\$113M
Reagents Recovery	\$67M	\$33M	\$2M	\$102M
Materials H&S	\$113M	\$56M	\$8M	\$177M
Plant Services*	\$109M	\$54M	\$8M	\$171M
TOTAL	\$625M	\$312M	\$32M	\$969M

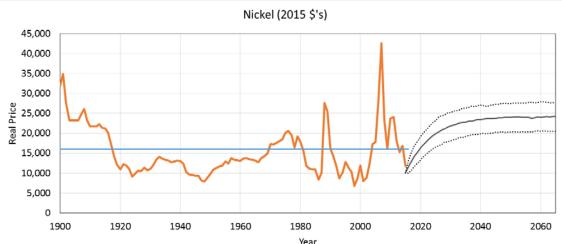
^{*} Includes power generation, CO generation plant, Water treatment & Administration

Consumables Unit Costs & Results: Cuprion Process

Consumables			
NH3	9.50E-02	tonne/tdn/year	
Limestone	7.80E-03	tonne/tdn/year	
Lime	1.20E-02	tonne/tdn/year	
LIX 64N	1.90E-05	tonne/tdn/year	
Kerosene	7.70E-05	tonne/tdn/year	
H2SO4	2.40E-01	tonne/tdn/year	
H2S	1.63E-03	tonne/tdn/year	
Na2SO4	4.50E-04	tonne/tdn/year	
Н3ВО3	6.70E-05	tonne/tdn/year	
NaCl	7.70E-05	tonne/tdn/year	
Cl2	3.30E-04	tonne/tdn/year	
Coal	2.30E-01	tonne/tdn/year	
Steam	1.84E+00	mmbtu/tdn/yer	
Water	2.00E+00	m3/tdn/year	

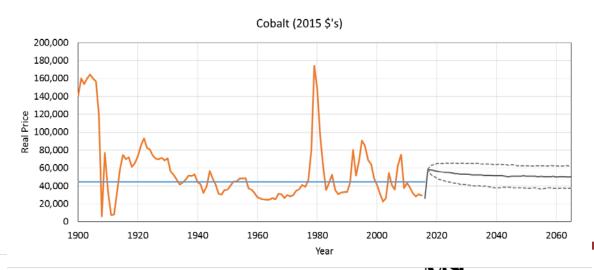
Consumables Cost			
	\$/tdn	\$/year	
NH3	\$28.50	\$85,500,000	
Limestone	\$0.12	\$351,000	
Lime	\$0.08	\$252,000	
LIX 64N	\$0.16	\$484,500	
Kerosene	\$0.04	\$131,157	
H2SO4	\$24.00	\$72,000,000	
H2S	\$0.73	\$2,200,500	
Na2SO4	\$0.07	\$202,500	
НЗВОЗ	\$0.05	\$142,710	
NaCl	\$0.00	\$11,550	
Cl2	\$0.12	\$346,500	
Coal	\$9.20	\$27,600,000	
Water	\$1.00	\$3,000,000	
Total	\$64.07	\$189,222,417	




Energy & Labor Costs: Cuprion Process

Energy Consumption		
	kWh/tdn	
Grinding	8.48	
Leaching	12.88	
Stripping	2.25	
Co solvent extraction	2.25	
Cu electrowin	23.75	
Ni electrowin	39.5	
Reagents recovery	2.88	
Material H&S	2.5	
Plant Services	2.88	
Total	94.49	

Labor Cost			
	Number of workers	\$/year	
Grinding	5	\$755,550	
Leaching	20	\$3,022,200	
Stripping	15	\$2,266,650	
Co solvent extraction	10	\$1,511,100	
Cu electrowin	10	\$1,511,100	
Ni electrowin	10	\$1,511,100	
Reagents recovery	10	\$1,511,100	
Material H&S	20	\$3,022,200	
Plant Services	50	\$7,555,500	
Total	150	\$22,666,500	


Expert Price Forecasts with Uncertainty

Still need to obtain forecasts for Mn-ore

Recommend a more detailed treatment with structural modeling in the future

What's next?

- Mn-ore price forecasts
- Review all revenue models including estimations of uncertainty
- Refine cost analysis for metallurgical processes
- Consideration of uncertainty and technical risks
 - For collection
 - For various metallurgical processes

Thoughts for economics working session

Metals Processing/Costs

- How to decide among the various process approaches
- Cost competitive position of each process
 - Capital costs/required investment
 - Energy requirements
 - Consumables
- Technical risk & uncertainty for each process
 - Which processes are most likely to succeed?
 - Which are most suspectible to cost overruns?

Metals Price Forecasts

- Will Cobalt prices remain high or are we currently experiencing a temporary peak?
- Will Nickel prices rise as battery manufacturers replace Co with Ni?
- Will electric vehicle markets grow as fast as expected?
 - Faster, slower?
 - How will this impact Co & Ni prices?
- Are there sufficient land based mining operations to meet future metals needs?

Economics Workshop Topic #1: Relative costs for each metallurgical process

- Discuss the relative cost position of the major metals processing routes
 - Leach/Electrowinning
 - Pyrometallurgy
 - Hydrometallurgy
- How do these compare in terms of:
 - CAPEX & OPEX
 - Energy requirements
 - Consumables
 - Water
- Are some processes better suited for some locations?

Economics Workshop Topic #2: Uncertainty associated with each metals process

- Discuss the technical risks associated with each major metal processing route
 - Which technologies are closest to full development?
 - Which have the most risk of not being ready?
- Discuss cost uncertainties associated with each technologies
 - Which technologies are most likely to have major cost overruns?
 - Which might have potential savings due to similarities to existing processes?

Economics Workshop Topic #3: Future of Cobalt & Nickel Prices

 Is Cobalt currently experiencing a price spike or will high prices endure?

 As battery manufacturers attempt to substitute Nickel for Cobalt, will Nickel prices rise?

- Future of electric vehicles
 - Will growth rates meet aggressive expectations?
 - Will other mobility systems replace battery electric vehicles?

Economics Workshop Topic #4: Impact on Terrestrial Mining

 Discuss potential impacts of seabed nodule mining on terrestrial mining for each metal

• Different impact on existing mines vs incentive mines

Impact on sovereign nations vs. firms vs individual mine sites