





## Potential impacts of mining on deep-sea benthic habitats, with a special focus on abyssal nodule habitats

Dr. Andrew K. Sweetman

Associate Professor and leader of the Marine Benthic Ecology, Biogeochemistry and In-Situ Technology research group, The Lyell Centre for Earth and Marine Science and Technology





# Impacts of mining

- Removal of habitat and organisms
  Biodiversity loss
- Smothering by resedimenting particles
- Sediment excavation and geochemical effects
- Ecotoxicological effects

## HERIOT High species richness in areas WATT targeted for mining (CCZ)





Amon et al. 2016



# Removal of nodules will lead to reductions in biodiversity



E

### HERIOT Benthic/ demersal scavenger WATT diversity and population structure is positively related to nodule cover suggesting impacts of nodule removal on higher TL organisms



Leitner et al. 2017

# IOT<br/>ATT<br/>ERSITYRemoval of hard substrate at SMS sites<br/>and seamounts



Boschen et al. 2015



SMS deposits

drothermally inactive with SMS deposits

> • m

n • 0

g O

### Hydrothermally inactive areas can have high and/ or Hydrothermally active with unique biodiversity



**Rumble II West** 

d •





## **Effects of from plumes**

- Depending on the type of mining, the plumes released may spread 10s to 100s of km from mining area
- Fine particles may remain suspended in the water column for years-decades (depending on particle size)
- Burial of the benthos
- Clogging of respiratory surfaces of filter feeders
- Coverage and dilution of food supply (organic material)





Natural sedimentation rate = 0.0000055mm d<sup>-1</sup>



Plan view of the simulated depth of settled sediment after one year of nodule collection following complete coverage of the blue box. Here, plume advection is driven by observed near-bed currents.

A. Dale, M. Inall, unpublished data



## **Effects of sedimentation**



0 cm sedimentation (sed) 0.1cm (sed)

0.5cm (sed)

3 cm (sed)



Front. Mar. Sci. 4:169.

Sci. 4:169.



# Reductions in abyssal faunal abundance due to smothering



No Deposition Area (NDA)



**Deposition Area (DA)** 





Impacts will likely be taxon specific

Fukushima et al. 2000



Maybe necessary to have plume impact reference zone owing to farfield effects from the plume











# Disturbance effects on biogeochemistry & benthic biota

- Modest disturbance levels out vertical gradients and reduces overall abundance of food (phytodetritus) as well as nematodes.
- Benthic life and functions of soft sediment deep-sea ecosystems are affected already by modest disturbances at levels well below expected mining impacts



#### OCEANS **Results from DISCOL (a long-term [26y],** FRI small-scale disturbance experiment) VERS







1 km

25.00 24.00

27.00

26.00

August-October 2015: Guayaquil-Guayaquil SO242/2







Disturbance track (7 years)

Abyss AUV (GEOMAR) images from JPI-Oceans project



DISCOL (DISturbance and re-COLonization experimental) site

#### 26 y old plough scars at the abyssal seafloor

Abyss AUV (GEOMAR) images from JPI-Oceans Mining Impact project



# Persistent impacts on benthic biogeochemical cycling



0-2 cm 2-5 cm sediment surface water column

Stratmann et al. (in review)







Stratmann et al. (in review)



### **Ecosystem recovery will be slow**



Jones DOB, Kaiser S, Sweetman AK, Smith CR, Menot L, Vink A, et al. (2017) Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12(2): e0171750.



Biological responses to disturbance from simulated deep-sea polyr nodule mining. PLoS ONE 12(2): e0171750.

#### HERIOT WATT UNIVERSITY

# Persistent effects of small-scale mining disturbance on microbial communities



Turnover rates of protein pools



Dell-Anno, unpublished data

JPI OCEANS

### **Microbial communities are vitally important** in benthic ecosystem functioning



Sweetman, Smith et al. (in revision)



### Mechanical and ecotoxicological effects of mining-generated sediment plumes on the cold-water octocoral *Dentomuricea meteor*

Aquaria-based experiment exposing corals to 3 treatments for 4 weeks: (1) a **control treatment** with clear seawater;

(2) exposure to suspended **hydrothermal sediment particles (PMS)** (0.5-70 μm);

(3) exposure to suspended **inert quartz particles**, with sizes comparable to treatment 2.







# Exposure to PMS particles induced:



-Cellular metabolic stress

 Tissue necrosis and coral death after a period of 12-27 days









Sweetman, AK et al 2017 Major impacts of climate change on deep-sea benthic ecosystems. Elem Sci Anth, 5: 4, DOI: https://doi.org/10.1525/elementa.203

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

- Deep-sea mining will lead to
  - Removal of habitat and organisms
  - Biodiversity loss
  - Smothering by resedimenting particles
  - Sediment excavation and geochemical effects
  - Ecotoxicological effects
- The sensitivities of benthic fauna are likely to very high (e.g., significant impacts occurring with as little as 0.1cm sedimentation at shallow depths)
- Recovery times of communities will be very slow (decades-centuries)

![](_page_29_Picture_0.jpeg)

3,500

4,000

4,500

3,500

4,000

4,500

5,000

b

0

-22

# **Additional slides**

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_30_Figure_0.jpeg)

Grain size distribution A