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Overview

Modelling patterns of diversity and
endemism on seamounts

Habitat suitability modelling for
seamount corals




Section 1: Modelling diversity and

endemism
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Number of species in sample

Four methods of sampling on these seamounts
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\/armation 1n sampling

e There were ~10 different sampling methods used to
collect fish & invertebrates from these seamounts

e This figure doesn’t include differences between the same
sampling method; e.g. different mesh sizes on nets

e This is one of the biggest challenges when synthesizing
seamount data for a large-scale analysis — very difficult
to correct for variation in sampling effort




SpPecies accumulation curves

(following Gotelli & Colwell (2001). Ecol. Lett. 4. 379-391)
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SpPecies accumulation curves

Vastly different number
of invertebrates collected
by different sampling
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SpPecies accumulation curves
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How/ torwork with this data?

Seamounts are extremely undersampled. Can we do
anything about this?

Rarefaction to standardise sampling effort — but does
not provide useful information when sampling
methods are different.

Non-parametric estimators (e.g. Chaol, Chao?2).
Typically do not converge with data patterns such as
those shown.




Fish collected by bottom trawl, Great Bol'shaya
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Fish collected by bottom trawl, Great Bol'shaya
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Endemismi on seamounts

e E.g. Richer de Forges et al. (2000). Nature
405: 944-947.

e What are the factors driving patterns of
endemism?

e Can we construct theoretical models of
endemism on seamounts?




A hierarchical model of
endemism
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A key guestion...

How many of these endemics are true
endemics, and how many are a product of
Incomplete sampling?

Misclassifications will have a big effect on the
power of models to explain patterns.




Modelling endemism

e Does terrestrial island biogeography theory
provide a suitable testbed for constructing
simple models of endemism on seamounts?

e What factors may be important in determining
% endemics on seamounts? Isolation, age,
depth, size...?




Endemism upen seamounts
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Simple plots to visually assess the effects of age, depth & geographical isolation




Seamount age vs. endemics

Percent endemics -
fish and invertebrates

Needs a GLM to
properly assess fit
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These plots will change
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Seamount depth vs. endemics

Percent endemics -
fish and invertebrates

Needs a GLM to
properly assess fit
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Distance firom continental margin

(geographic Isolation) vs..endemics

Percent endemics -
fish and invertebrates

Needs a GLM to
properly assess fit

Certainly not the
full story

e.g. Tasmanian
Seamounts
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IBGT does not appear
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To summarise

e Problems with correcting for sampling effort.
This is a major issue.

e General patterns of endemism & the factors
responsible are difficult to establish.

e These simple models (based on island
biogeography) do not appear to provide a
good fit to seamounts. Very data limited.




Section 2: Modelling global habitat

suitability for Scleractinian corals on
seamounts




The underlying principle of habitat
modelling

c_)bs_ervgd + environmental factors = predmtgd
distribution distribution

J. McPherson




Modelling deep-sea coral ranges

e Central question:
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Scleratinia by depth
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... are depths merely reflecting sampling bias?




Modelling methods

Envelope Models
e BIOCLIM, DOMAIN, ivlahalanobis distance

Canonical Meinods
o ENFA, discriminant analysis

Regression Techniques

e GLM, GAM, generalized dissimilarity models,
(boosted) regression trees, MARS

Machine learning methods

e GARP, artificial neural networks, MAXENT




ENEA — Environmentall Niche
Factor Analysis

Inputs: ecogeographical variables (EGV’s) such
as temperature, salinity, chlorophyll; and a
Species presence map.

Summarises all variables into a few uncorrelated
factors

Takes only presence data into account.

Compares the species distribution to the ‘global’
(available) environmental habitat distribution.

Hirzel et al., Ecology (2002)




ENEA

e.g. Brotons et al. 2004 Ecography 27: 437-448
e Species nicheis a of the
environment.

e Species set of EGV’s differs from global set by:

— (deviation from the global mean)
— (niche breadth)
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ENIEA - continued

In many respects similar to a PCA, but eigenvectors are
assigned ecological meaning: first represents 100% of
marginality, others the remaining specialization.

LIMITATIONS OF ENFA

Assumes that ecogeographical variables (EGV’s) are
multinormally distributed & represent important factors.

Threshold selection for model is not simple (converting
from habitat suitability % to p/a).

Sample range must reflect actual species range.

Hirzel et al., Ecology (2002)



TThe general 1dea

Globally 1 degree
gridded data for

0 —5500m from the
World Ocean Atlas,
GLODAP project &
elsewhere

Ecogeographical variables

Suitable habitat prediction

Species presence

Scieta by depth

Scleratinia by depth on a 1 degree grid




Coral habitat prediction

e Model suitable locations for Scleratinia globally against
an environmental background of the global ocean down
to 5500m.

Then restrict it only to those locations that are known to
have seamounts in the appropriate depth range. Cannot
map directly to seamounts due to SAUP and coral data
mismatches.

Remember, we are only predicting suitable Scleratinia
habitat. We do not know if it will actually contain coral.




Scleratinia Results

Expl.Spec. Cum.Expl.Specialisation
0.343 0.343
0.346 0.689
0.122 0.811 Remember that first
0.077 0.888 factor accounts for all
0.050 0.938 of the species
marginality
Marginality Specialisation
1(34%) 2 (35%) 3 (12%)
Total CO2 -0.45 0.24 -0.44
Depth -0.43 0.21 0.10
Temperature 0.41 -0 13 0.02
% O2 sat. 0.39 0.85 -0.75
Alkalinity -0.33 -0.08 0.00
Sfc. Chloro. 0.29 -0.02 -0.03

Dis. O2 0.27 -0.39 0.48
Salinity 0.23 -0.03 0.08
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Octocorallia

e Presence data much more limited
e Model likely to have less power
e Model at a very preliminary stage
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Octocorallia Results

Value Expl.Spec. Cum.Expl.Specialisation
7.916 0.305 0.305
8.838 0.341 0.646
5.521 0.213 0.859
1.502 0.058 0.917
0.897 0.035 0.952

Remember that first
factor accounts for all
of the species
marginality

Marginality —Specialisation
1031%) 21(34%) 3 (21%)
Temperature 0.62 -0.53 0.33
Depth -0.51. -0.77 -0.04
Salinity -0.43 0.07 -0.16
Dis. 02 -0.29 0.19 0.65
Total CO2 -0.26 0.23 -0.17
Alkalinity -0.13 -0.17 0.32
% O2 sat. -0.04 -0.05 -0.55
Sfc. chloro 0.03 0.02 0.01
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The next steps...

e This workshop Is a perfect opportunity to
‘ground truth’ these models

e Match to fishing effort & seamount density.
(Spatial autocorrelation issues — can deal
with these in a mixed-model spatial
regression).
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Model calibration and verification

Scleractinia

Area-adjusted frequency

5 10 15 20 25 30 3H 40 45 50 5 60 65 70 75 80 8 90O 95 100
Habitat suitability bins

Octocorallia

>
[&]
c
Q
A
(O]
S
=
e}
(0]
S
)]
=
ie]
(IU
(1]
]
—
<

Cross-verification: 4 bins, 10 replicates




Otner potentially important factors

Current velocity — filter feeders. There may be a scaling
Issue here as small-scale turbulence may be v. different
from regional current average

Substrate type

Seamount diameter/height as a measure of patch size
Distance to nearest seamount chain

Many other possibilities




\What else can we do?

Compare outputs from multiple appropriate models
(e.g. maximum entropy models for absence only
data) for verification purposes (model averaging)

Compare to data from other (non-seamount) deep
sea Scleractinia; differences, similarities

Community based models use commonly associated
species as a ‘proxy’ for presence records




In Conclusion

Data quantity and differences in sampling methodology
are two key limiting factors for modelling diversity on
seamounts

Need to further develop statistical tools for these kinds of
data

Having data with presence/absence (i.e. zeros) opens up
a much wider variety of modelling techniques

Apply appropriate analysis technigues for the quality and
guantity of the data available
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