2018 May 27 - 30, Quindao, China

International Workshop

of the REMP for the Cobalt-Rich Ferromanganese Crust in the Triangle Area in the northwest Pacific Ocean

Major Factors influencing Seamount Niches

Tomohiko Fukushima

Japan Agency of Marin-Earth Science and Technology (JAMSTEC)

Summary of this Presentation

Main Topic is about "Distribution of Megafauna".

Research has been done by the Metal Mining Agency of Japan (current JOGMEC), for the SOPAC (South Pacific Applied Geoscience Commission) in the areas of central and south Pacific Ocean.

An original purpose of this survey is to estimate quantity of mineral resources i.e. polymetallic nodules, polymetallic sulfide and cobalt-rich crust.

Results has been published in 2004 at an ISA workshop. However, in this presentation, a previous conclusion is partly changed, and add new consideration.

Animals large enough (larger than 2 cm) to be determined in photographs, proposed as key taxan for environmental impact assessment in deep sea mining. (ISBA/19/LTC/8) **Phylum: Porifera** (Sponges)

Eurete erectum (?)

<u>Hyalonema</u> sp

Semperella sp.

Caulophacus cf. elatus

Sericolophus sp. (?)

<u>Hyalonema</u> sp

Phylum: Cnidaria Class: Actinaria

Phylum: Cnidaria Class: gorgonacea

Acanthogorgia sp(?)

Calyptrophora sp (?)

Iridigirgia sp.

Phylum: Cnidaria Class: Pennatulacea

Ellisella sp.

Cirrhipathes sp (?)

Virgularia sp.(?)

Results and Discussion

Phylum: Echinodermata Class: Crinoidea

Proisocrinus sp (?)

Proisocrinus sp (?)

Phylum: Echinodermata

Class: Holothuroidea

Phylum: Echinodermata

Class: Echinoidea

(burrowing sea urchin)

Phylum: Echinodermata

Class: Asteroidea (sea star)

Freyella sp (eight arms)

Freyella sp (five arms)

Hymenaster sp.

Phylum: Arthuropoda

Class: Crustacea

(galathelid crab : Anomura)

Aristaemorph sp. (Macrura)

(Brachyura)

(galathelid crab : Anomura)

(Brachyura)

Phylum: Vertebrata

Class: Osteichthyes

Benthypteris grallator (Tripodfish)

Typhlonus nasus

Others

Enteropneusta

Octopus (Mollusca, Cephalopoda)

(as Official Development Assistance survey for) SOPAC

At the request of Japanese government, the MMAJ has researched a potential of ocean mineral resources for SOPAC from 1985 to 2005. (deep-tow photographic data from 1985 to 1999 are used for this study).

(Survey for the SOPAC) **ORIGINAL PURPOSE**

Original purpose is to estimate potential of mineral resources.

Not for biological abundant place / certain animal

"Biological survey without bias"

Manganese Nodules (Metal Mining Agency of Japan) **Cobalt-Rich Crust**

Polymetallic Sulphide (Metal Mining Agency of Japan)

(Metal Mining Agency of Japan)

PHOTOGRAPHS

are taken along transect lines by a Deep-Tow (CDC)

CDC: Continuous Deep- Sea Camera System

PHOTOGRAPHS and COVERED AREA

	MN		CRC		PS	
Country	No. of Photo	(ha)	No. of Photo	(ha)	No. of Photo	(ha)
Kiribati	950	0.57	1,773	1.06		
Cook	794	0.48				
Tuvalu	73	0.04	753	0.45		
PNG					1,073	0.64
Vanuatu					2,560	1.54
Solomon					1,524	0.91
Tonga					1,736	1.04
Samoa			589	0.35		
RMI			3,428	2.06		
FSM			3,311	1.99		

Covered Area (ha) = (3m * 2m) / 10000 * No. of Photograph

Number of Photo; 18562 (MN area; 1847, CRC; 9854, PS; 6893)

Coverd Area; 1.13 ha (MN area; 1.09, CRC; 5.91, PS; 4.13)

Still photographs data were Classified

a. Clay and ooze (CO)

c. Rich Manganese Nodules area (RM)

according to

SEABED Conditions

e. Crust area (CR)

ORGANISMS data were Classified

Countable or Uncountable

(quantitative or no quantitative)

Countable

Uncountable

Xenophyophorea Left: Tendal, 1972, Right: Blum, H.

Non-quantitative

Faster Motile fauna

ORGANISMS were sorted out by Feeding Types

a. Suspension feeder: Porifera, Cnidaria, Crinoidea, Ascidiacea

b. Deposit feeder: Holothuroidea, Echinoidea, Hemichordata

c. Others: Annelida,

Photo from other area

Results and Discussion

Seafloor condition

in manganese nodules area

Seafloor condition in Polymetallic Sulphides area

Seafloor condition in Cobalt Rich Crust area

The most variety seafloor feature are observed in CRC

Faunae

~	Phylum	Class	Order	MN	CRC	PS
1	Protozoa	Rhizopodia	Xenophyophores	0	0	0
2	Porifera	hexactinellida		0	0	0
3				-	0	0
4	Cnidaria	Anthozoa	Actinaria	0	0	0
5		Anthozoa	Gorgonacea	-	0	0
6		Anthozoa	Pennatulacea	0	0	0
7		Bryozoa		-	0	0
8	Annelida	Polychaeta		-	-	0
9	Mollusca	Decapoda		-	0	0
10	Echinodermata	Crinoidea	Comatulida	_	0	0
. 11		Crinoidea		0	0	0
12		Asteroidea		0	0	0
13		Echinoidea		-	0	0
14		Holothuroidea		0	0	0
15		Ophiuroidea		0	0	0
16	Arthropoda	Crustacea	Macrura	_	0	0
17		Crustacea	Anomura	-	0	0
18		Crustacea	Brachyura	-	0	0
19		Crustacea		-	0	0
20	Prochordata	Ascidiacea		0	0	0
21	Hemichordata	Enteropneusta		_	0	0
22	Vertebrata	Chondrichthyes		_	0	0
23		Osteichthyes		0	0	0

Compare to MN area, faunal diversity is rich in CRC

Abundance and Standard Deviation of Megafauna

Ratio of Feeding Type

Percentages of suspension feeder is the highest in the CRC

Result Summary

parameters	MN	CRC	PS				
habitat condition	itat condition monotonous		diverse				
faunal diversity	versity lower		higher				
Suspension feeder	nsion feeder poor		abundant				
abundance	poor		rich				
SD/means ratio	ans ratio small		large				
habitat condition was determined by conditions of seafloors							
faunal diversity was determined by the number of faunal group							
S/D ratio: Ssuspension feeders / Deposit feeders							

Comparison between CRC, and MN and PS area

Sea bottom conditions in CRC area are diverse (Clay, Ooze, Crust and Nodules). It can be speculated that the diversity reflects large variations of megafauna abundance (larger SD). (= diversity of habitat / diversity of organisms)

Large heterogeneity of abundance and larger faunal diversity suggest that target of the environmental evaluation need to be diverse (variety of evaluation target for EIA are exist).

Seamount is a three-dimensional topography, and complex water flow exist. Therefore distributions of suspension feeders are influenced by current velocity and direction (water flow and suspension feeders are closely related)

SCENARIO

If a mining is done, the topography will change, and accordingly the direction and velocity of water flow may change.

As a result, the place where the sediments are blown up may be changed / the place barely rocky are may be buried by sediment (= habitat change).

Also, the feed supply route to the suspension feeder may change. (= change in water flow means feed supply route may change).

This is one of the imaginable influence scenario.

Major Factors influencing Seamount Niches

Although limited research results, change of current direction and velocity, that is accompany with mining activity, is speculated as one of major influencing factors in the CRC area.

However, considering that the variability of megafauna distribution is large, various evaluation targets are necessary. That is also features of CRC.

for your kind attention